Sixty-two charm events have been observed in an exposure of the SLAC Hybrid Facility toa backward sacttered laser beam. Based on 22 neutral and 21 charged decays we have measured the charmed-meson lifetimes to be τD0=(6.8−1.8+2.3)×10−13 sec, τD±=(7.4−2.0+2.3)×10−13 sec and their ratio τD±τD0=1.1−0.3+0.6. The inclusive charm cross section at a photon energy of 20 GeV has been measured to be 56−23+24 nb. Evidence is presented for a non-DD¯ component to charm production, consistent with (35±20)% Λc+ production and some D*± production. We have found no unambiguous F decays.
The production of φ-meson pairs has been observed in 400-GeV/c proton-nucleon interactions at the Fermilab multiparticle spectrometer in the inclusive reaction pN→φφ+X, where each φ decays to a K+K− pair. A fast (200 nsec) high-level processor was used to selectively trigger on events containing two pairs of oppositely charged kaons having low invariant masses. The experimental apparatus and trigger processor are described. The cross section for φφ production and an upper limit for ηc production are presented.
No description provided.
Neutral-pion production in 250-GeV/c π−p interactions are studied using the Fermilab 15-ft bubble chamber. The mean number of neutral pions produced is 3.54±0.15 per inelastic collision and a fit to a linear dependence on the charged multiplicity gives 〈n0〉=1.30+0.56n−. The π0 transverse- and longitudinal-momentum distributions are obtained from the inclusive γ-ray data and compared with the distribution obtained from those π0's which have both decay γ rays converting in the bubble chamber.
PI0 MEAN MULTIPLICITY IS OBTAINED FROM SIG(PI0,BACKGROUND CORRECTED)=70.8+-8.3 MB. THE NON-CORRECTED BACKGROUD SIG(PI0)=75.7+-3.2 MB AND < PI0 >=3.54+-0.15.
We present an analysis of ππN final states obtained from π−p interactions at 2.26 GeV/c. Strong ρ production is present in both final states. In addition, significant nucleon isobar production is observed. We observed the following cross sections: σ(π−π0p)=3.77±0.13 mb, σ(π−π+n)=5.67±0.17 mb, σ(ρ−p)=2.19±0.09 mb, σ(Δ+(1236)π−)=0.30±0.10 mb, σ(N0(1650)π0)=0.49±0.07 mb, σ(ρ0n)=2.89±0.11 mb, σ(Δ−(1236)π+)=0.11±0.06 mb, σ(N+(1470)π−)=0.24±0.06 mb, and σ(N+(1650)π−)=0.45±0.05 mb. The spin-density matrix elements are determined for the ρ0 by interpreting the ρ0 asymmetry as an interference between the resonant P wave and a T=0 S wave. A search for the ε0 in the π+π−n final state failed to yield a direct observation of this effect.
This paper analyzes π−N→π−π−π+N events from Fermilab experiment E-580, using 200-GeV/c particles on a segmented target of plastic scintillator. Starting with 48 657 triggers, data-quality cuts and a cut on missing mass squared of M2<16 GeV2 lead to a final sample of 7205 events. The xF distribution of the 3π system shows almost all events in a sharp peak at xF=1, suggesting the presence of beam diffraction into three pions. The overall t’ distribution is fit to the sum of three exponential terms corresponding to coherent diffraction from carbon nuclei, diffraction from individual nucleons, and background. Cross sections per nucleon and exponential slopes are reported for each of the three components as a function of 3π effective mass. The cross section for diffraction from the nucleons in the target is 0.34±0.04 mb/nucleon. The cross section for coherent diffraction from carbon is 1.08±0.12 mb/nucleus. The exponential slope for diffraction is observed to decrease with increasing 3π effective mass. The fraction of coherent carbon diffraction in the total cross section is observed to decrease with increasing 3π effective mass. In the π−π+ effective-mass spectrum the ρ0(770) and f0(1270) are observed and their cross sections per nucleon are calculated. In the π−π−π+ effective-mass spectrum the A1−/A2− and A3− enhancements are observed and a cross section for the A3− is calculated.
The differential cross section has been measured using 940 events from the BNL 30-inch deuterium bubble chamber. Events were selected without regard to length of the deuteron, and so wide-angle scatters are included. The data are fitted well by a Glauber model with reasonable assumptions about the parameters.
No description provided.
INTEGRATED CROSS SECTION USING EXPONENTIAL FIT TO FORWARD PEAK (SLOPE = 25.2 +- 1.4 GEV**-2).
This paper presents the results of a study of the reaction K−d→(ps)Λ0π−. The cross section for the process K−n→Λ0π− has been measured as a function of the center-of-mass energy in the range from 1550 to 1650 MeV. An energy-dependent partial-wave analysis was performed for this reaction, and two acceptable solutions were found. The first solution indicated no resonant structure in this energy range below the Σ(1670). The second solution indicated resonant structure in the S11 partial wave with ER=1600±6 MeV/c2, Γ(ER)=87±19 MeV/c2, and x=0.12±0.02.
No description provided.
No description provided.
abstract only
No description provided.
No description provided.
No description provided.
Semi-inclusive π0 multiplicity distributions for 2-14 charged prongs are obtained using a generating-function approach based on an expansion in terms of Mueller moments. The four-prong data require the explicit assumption of a two-component model. Under this assumption and the further assumption of no three-neutral-particle correlations, the total pion multiplicity is obtained. The total multiplicity shows peaking at even prongs, indicative of G-parity-conserving diffractive processes which dominate at lower multiplicities. The cross section for these processes is ∼4 mb.
The charged-particle multiplicity distribution from 250-GeV/c π−p interactions in the Fermilab 15-ft bubble chamber is presented. The corrections to the raw data are described. Fits to these data along with other high-energy bubble-chamber data show that cluster models with two components—a low-multiplicity, diffractive component and a high-multiplicity, nondiffractive component—describe the data fairly well. The charged multiplicity of each cluster is found to be ∼2, while the number of clusters for each component grows linearly with ln(s). The multiplicity moments are consistent with other experiments. We find 〈nc〉=8.427±0.059, f2cc=8.66±0.11, 〈nc〉D=2.038±0.023. The total inelastic cross section is σI=21.42±0.50 mb.