The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.
No description provided.
No description provided.
No description provided.
Data are presented on the inclusive production of π±, K±, p, and p¯ for π+, K+, and protons incident on nuclear targets at 100 GeV. The results cover the kinematic range 30≤P≤88 GeV/c for Pt=0.3 and 0.5 GeV/c. The observed A dependence of the invariant cross sections exhibits remarkable simplicity, which does not naturally follow from current models of particle production. The results show that the hypothesis of limiting fragmentation can be extended to include collisions with nuclei.
No description provided.
An experiment using the Fermilab Single Arm Spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p→c+X, where a and c were π±, K±, p, or p¯. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12
No description provided.
No description provided.
No description provided.
We present high-statistics results on the reactions a+p→c+X where a and c can be any of π±, K±, p, or p¯. The data were taken at 100 and 175 GeV/c incident momenta using the Fermilab Single-Arm Spectrometer operated over the kinematic range 0.2
No description provided.
No description provided.
No description provided.
Measurements of the semileptonic weak-neutral-current reactions νμp→νμp and ν¯μp→ν¯μp are presented. The experiment was performed using a 170-metric-ton high-resolution target detector in the BNL wide-band neutrino beam. High-statistics samples yield the absolute differential cross sections dσ(νμp)/dQ2 and dσ(ν¯μp)/dQ2. A measurement of the axial-vector form factor GA(Q2) is also presented. The results are in good agreement with the standard model SU(2)×U(1). The weak-neutral-current parameter sin2thetaW is determined to be sin2θW=0.220±0.016(stat)−0.031+0.023(syst).
Errors contain both statistics and systematics, except for additional overall normalisation error given above. Neutrino energy is 0 to 5 GeV with peak at 0.8 Gev.
Total and differential cross sections for νμe→νμe and ν¯μe→ν¯μe are measured. Values for the model-independent neutral-current couplings of the electron are found to be gV=−0.107±0.035(stat)±0.028(syst) and gA=−0.514±0.023(stat)±0.028(syst). The electroweak mixing parameter sin2θW is determined to be 0.195±0.018(stat)±0.013(syst). Limits are set for the charge radius and magnetic moment of the neutrino as (〈r2〉)<0.24×10−32 cm2 and fμ<0.85×10−9 Bohr magnetons, respectively.
No description provided.
No description provided.
No description provided.
This paper presents the results of a study of the dominant neutral final states from π−p interactions. The data were obtained in an experiment performed at the Brookhaven National Laboratory Alternating Gradient Synchrotron, using a set of steel-plate optical spark chambers surrounding a liquid-hydrogen target. We present differential and total cross sections for the reactions (1) π−p→n+π0 and (2) π−p→n+η0(η0→2γ) and total cross sections for the reactions (3) π−p→n+kπ0 (k=2, 3, 4, and 5) and (4) π−p→all neutrals for eighteen values of beam momentum in the interval 1.3 to 4.0 GeV/c. The angular distributions for (1) and (2) have been analyzed in terms of expansions in Legendre polynomials, the coefficients for which are also given.
No description provided.
SIG = 4*PI*LEG(L=0).
FORWARD DIFFERENTIAL CROSS SECTION CALCULATED FROM LEGENDRE POLYNOMIAL COEFFICIENTS AND ERROR MATRICES.
We present measurements from a counter-optical spark chamber experiment of the differential cross sections for p̄p → π 0 π 0 , π 0 η 0 at 25 momenta in the range 1.1 − 2.0 GeV/ c (c.m. energy 2.12 to 2.43 GeV). Approximately 750 000 pictures were taken in the experiment.
THE ANGULAR DISTRIBUTIONS IN THE PUBLISHED FIGURES ARE NOT TABULATED HERE SINCE THEY ARE ONLY RECONSTRUCTED FROM THE LEGENDRE EXPANSION COEFFICIENTS WHICH WERE MEASURED DIRECTLY FROM THE DATA.
No description provided.
LEGENDRE COEFFICIENTS NORMALIZED SO THAT LEG(L=0) = SIG/(2*PI) (IDENTICAL PARTICLES IN FINAL STATE). THESE ARE PLOTTED IN FIG. 1 OF THE FOLLOWING PAPER.
We present a partial wave amplitude analysis of the differential cross sections for p̄p → π 0 π 0 at 25 energies from 2.12 to 2.43 GeV. The results suggest the presence of a J PC I G = 2 ++ 0 + resonance at 2.15 GeV. An isospin decomposition of p̄p → π + π - is also presented.
THESE LEGENDRE COEFFICIENTS ARE TABULATED IN THE RECORD OF THE PRECEDING PAPER, R. S. DULUDE ET AL., PL 79B, 329 (1978).
An experiment designed to study the π−p total neutral cross section and its breakdown into several channels has been performed at eleven incident pion momenta ranging from 654 to 1247 MeV/c. Angular distributions for the charge exchange π0 and for η0 production are given in terms of Legendre-polynomial expansion coefficients. Forward and backward differential cross sections are presented for the charge-exchange channel and comparisons with recent dispersion-relation predictions for the forward cross section are made.
No description provided.
No description provided.
No description provided.