Proton proton triple scattering at 1.9 gev

Carithers, W.C. ; Adair, R.K. ; Hawkins, C.B.J. ; et al.
Phys.Rev. 179 (1969) 1304-1314, 1969.
Inspire Record 55504 DOI 10.17182/hepdata.5476

We have measured the Wolfenstein triple-scattering parameters R, D, and A′ at 1.9 GeV for p−p scattering at 90° in the c.m. system. We find that R=0.11±0.16, A′=−0.54±0.16, and D=0.91±0.21, where these parameters are defined in the c.m. system. The possibility of a vector character for the strong inter-actions is discussed. We conclude that neither a single vector-meson exchange nor a single pseudoscalar-meson exchange can account for the data. Spin effects are found to remain an important part of the nucleon-nucleon interaction at four-momentum transfer −t=1.8 (GeV/c)2.

3 data tables match query

'ALL'.

No description provided.

No description provided.


SEARCH FOR QUARKS AND HEAVY STABLE PARTICLES PRODUCED AT 300-GEV.

Leipuner, L.b. ; Larsen, R.c. ; Sessoms, A.l. ; et al.
Phys.Rev.Lett. 31 (1973) 1226-1229, 1973.
Inspire Record 81800 DOI 10.17182/hepdata.21373

We report a search for quasistable particles with anomalous charge or large mass produced by the interaction of 300-GeV protons at the National Accelerator Laboratory. Analyses of energy losses in a counter telescope lead to cross-section limits of 10−35 cm2 for particles with charges of e3 and 2e3 and 5×10−31 cm2 for charge-4e3 particles. Time-of-flight measurements gave cross-section limits of about 10−31 cm2 for the production of massive charged particles.

1 data table match query

No description provided.


A Measurement of the Lepton Charge Asymmetry in K0(L) --> pi+- Lepton-+ Neutrino Decays

Williams, H.H. ; Larsen, R.C. ; Leipuner, L.B. ; et al.
Phys.Rev.Lett. 31 (1973) 1521, 1973.
Inspire Record 657 DOI 10.17182/hepdata.50277

We have made a measurement of the lepton charge asymmetry in KL0 decays. Magnetic analyses of the decay products in a spectrometer using multiwire proportional counters allowed kinematic reconstruction of the event where the particles traversed only 293 mg of matter. The leptons were differentiated from the pions only through their different transverse-momentum distributions. The asymmetry was measured to be (3.33 ± 0.50) × 10−3, in accord with the superweak description of CP nonconservation.

1 data table match query

The asymmetry is defined as follows: ASYM = Cik/Bik, where Cik and Bik are the related to intensity of the events and depend on the particular set of transverse momenta of the leptons and pions (see text for details).


Measurements of multijet event isotropies using optimal transport with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 10 (2023) 060, 2023.
Inspire Record 2663035 DOI 10.17182/hepdata.110164

A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.

75 data tables match query

IRing2 for HT2>=500 GeV, NJets>=2

IRing2 for HT2>=500 GeV, NJets>=3

IRing2 for HT2>=500 GeV, NJets>=4

More…

Polarization transfer in quasifree (p, n) reactions at 495 MeV

Chen, X.Y. ; Taddeucci, T.N. ; McClelland, J.B. ; et al.
Phys.Rev.C 47 (1993) 2159, 1993.
Inspire Record 369336 DOI 10.17182/hepdata.26026

A complete set of polarization-transfer observables has been measured for quasifree (p→,n→) reactions on H2, C12, and Ca40 at a bombarding energy of 495 MeV and a laboratory scattering angle of 18°. The data span an energy-loss range from 0 to 160 MeV, with a corresponding momentum transfer range of qc.m.=1.7–1.9 fm−1. The laboratory observables are used to construct partial cross sections proportional to the nonspin response and three orthogonal spin responses. These results are compared to the transverse spin response measured in deep inelastic electron scattering and to nuclear responses based on the random phase approximation. The polarization observables for all three targets are remarkably similar and reveal no evidence for an enhancement of the spin-longitudinal nuclear response relative to the spin-transverse response. These results suggest the need for substantial modifications to the standard form assumed for the residual particle-hole interaction.

3 data tables match query

No description provided.

No description provided.

No description provided.


Proton-Proton Interactions and Onset of Deconfinement

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Anticic, T. ; et al.
Phys.Rev.C 102 (2020) 011901, 2020.
Inspire Record 1772241 DOI 10.17182/hepdata.95182

The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.

0 data tables match query

Measurement of $\phi $ meson production in $p + p$ interactions at 40, 80 and $158 \, \hbox {GeV}/c$ with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Eur.Phys.J.C 80 (2020) 199, 2020.
Inspire Record 1749613 DOI 10.17182/hepdata.93228

Results on $\phi$ meson production in inelastic p+p collisions at CERN SPS energies are presented. They are derived from data collected by the NA61/SHINE fixed target experiment, by means of invariant mass spectra fits in the $\phi \to K^+K^-$ decay channel. They include the first ever measured double differential spectra of $\phi$ mesons as a function of rapidity $y$ and transverse momentum $p_T$ for proton beam momenta of 80 GeV/c and 158 GeV/c, as well as single differential spectra of $y$ or $p_T$ for beam momentum of 40 GeV/c. The corresponding total $\phi$ yields per inelastic p+p event are obtained. These results are compared with existing data on $\phi$ meson production in p+p collisions. The comparison shows consistency but superior accuracy of the present measurements. The emission of $\phi$ mesons in p+p reactions is confronted with that occurring in Pb+Pb collisions, and the experimental results are compared with model predictions. It appears that none of the considered models can properly describe all the experimental observables.

17 data tables match query

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 158 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 80 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Transverse momentum $p_T$ spectrum of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 40 GeV/c, in a broad rapidity $y$ bin of (0, 1.5).

More…

Measurements of observables sensitive to colour reconnection in $t\bar{t}$ events with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 518, 2023.
Inspire Record 2152933 DOI 10.17182/hepdata.135459

A measurement of observables sensitive to effects of colour reconnection in top-quark pair-production events is presented using 139 fb$^{-1}$ of 13$\,$TeV proton-proton collision data collected by the ATLAS detector at the LHC. Events are selected by requiring exactly one isolated electron and one isolated muon with opposite charge and two or three jets, where exactly two jets are required to be $b$-tagged. For the selected events, measurements are presented for the charged-particle multiplicity, the scalar sum of the transverse momenta of the charged particles, and the same scalar sum in bins of charged-particle multiplicity. These observables are unfolded to the stable-particle level, thereby correcting for migration effects due to finite detector resolution, acceptance and efficiency effects. The particle-level measurements are compared with different colour reconnection models in Monte Carlo generators. These measurements disfavour some of the colour reconnection models and provide inputs to future optimisation of the parameters in Monte Carlo generators.

17 data tables match query

Naming convention for the observables at different levels of the analysis. At the background-subtracted level the contributions of tracks from pile-up collisions and tracks from secondary vertices are subtracted. At the corrected level the tracking-efficiency correction (TEC) is applied. The observables at particle level are the analysis results.

The $\chi^2$ and NDF for measured normalised differential cross-sections obtained by comparing the different predictions with the unfolded data. Global($n_\text{ch},\Sigma_{n_{\text{ch}}} p_{\text{T}}$) denotes the scenario in which the covariance matrix is built including the correlations of systematic uncertainties between the two observables $n_{\text{ch}}$ and $\Sigma_{n_{\text{ch}}} p_{\text{T}}$

Normalised differential cross-section as a function of $n_\text{ch}$.

More…

Consistent measurements of alpha(s) from precise oriented event shape distributions.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 557-584, 2000.
Inspire Record 522656 DOI 10.17182/hepdata.13245

An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.

33 data tables match query

The weighted value of ALPHA-S from all the measured observables using experimentally optimized renormalization scale values and corrected for the b-mass toleading order.

The value of ALPHA-S derived from the JCEF and corrected for heavy quark mass effects. The quoted errors are respectively due to experimental error, hadronization, renormalization scale and heavy quark mass correction uncertainties.

Energy Energy Correlation EEC.

More…

Investigation of the splitting of quark and gluon jets.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 4 (1998) 1-17, 1998.
Inspire Record 467927 DOI 10.17182/hepdata.49547

The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation CA/CF. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution y, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is 2.77±0.11±0.10. Due to non-perturbative effects, the data are below the expectation at small y. The transition from the perturbative to the non-perturbative domain appears at smaller y for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets.

14 data tables match query

Scaled energy distribution of charged hadrons produced in Quark jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Gluon jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Quark jets in 'Mercedes' topology 3-JET events.

More…