We have measured the production of massive muon pairs in hadronic collisions at the CERN Super Proton Synchrotron (SPS). A clear signal of production of the ϒ resonance by π + of 200 GeV/ c and π − of 200 and 280 GeV/ c on a platinum target is observed.
No description provided.
No description provided.
Hadron jets produced in e + e − annihilation between 13 GeV and 31.6 GeV in c.m. at PETRA are analyzed. The transverse momentum of the jets is found to increase strongly with c.m. energy. The broadening of the jets is not uniform in azimuthal angle around the quark direction but tends to yield planar events with large and growing transverse momenta in the plane and smaller transverse momenta normal to the plane. The simple q q collinear jet picture is ruled out. The observation of planar events shows that there are three basic particles in the final state. Indeed, several events with three well-separated jets of hadrons are observed at the highest energies. This occurs naturally when the outgoing quark radiates a hard noncollinear gluon, i.e., e + e − → q q g with the quarks and the gluons fragmenting into hadrons with limited transverse momenta.
NORMALIZED TRANSVERSE MOMENTUM DISTRIBUTION WITH RESPECT TO THE SPHERICITY AXIS AT 13, 17, AND 27.4 TO 31.6 GEV.
Measurements of the reactions e++e−→e++e−, μ++μ−, and τ++τ− at PETRA energies (s12=13,17,27.4,30 and 31.6 GeV) are reported. The results show that these reactions agree well with the predictions of quantum electrodynamics thus determining that all the known charged leptons are pointlike particles to a distance < × 10−16 cm.
No description provided.
No description provided.
We report the analysis of the spatial energy distribution of data for e+e−→hadrons obtained with the MARK-J detector at PETRA. We define the quantity "oblateness" to describe the flat shape of the energy configuration and the three-jet structure which is unambiguously observed for the first time. Our data can be explained by quantum chromodynamic predictions for the production of quark-antiquark pairs accompanied by hard noncollinear gluons.
AVERAGE OBLATENESS AS A FUNCTION OF SQRT(S) AND OF THRUST AND OBLATENESS DISTRIBUTION (1/N)*DN/DOBLATENESS AT 17 AND 27.4 TO 31.6 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
This paper presents production and decay characteristics of 500 high-mass, high-resolution μ+μ− pairs produced in π− Be collisions at 150 and 175 GeV/c. The data do not agree with a simple Drell-Yan production mechanism, but indicate that higher-order quantum-chromodynamic corrections must be included.
No description provided.
No description provided.
Results on the hadronic final state in e/sup +/e/sup -/ annihilation at 13, 17 and 27.4 GeV are presented. There is no compelling evidence for the existence of the t quark in these data, which are in general agreement with a simple quark parton model. Some tentative indications of QCD effects are observed in the p/sub T//sup 2/ distributions.
TAU HEAVY LEPTON CONTRIBUTION SUBTRACTED.
INCLUSIVE HADRON SPECTRUM. THESE DATA AT 13, 17 AND 27.4 GEV ON S*D(SIG)/DX ARE INCLUDED IN THE RECORD OF R. BRANDELIK ET AL., PL 89B, 418 (1980).
The elastic photoproduction of four pions has been studied at incident photon energies between 2.8 and 4.8 GeV. Production cross-sections are presented and an analysis of the angular decay correlations is also described, indicating a large 1− contribution in both final states, π+ π− π+ π− and π+ π− π0 π0. A quantitative understanding of these and other available 4π photoproduction data in terms of the ρ′(∼1.2GeV) and the ρ′(∼1.6) is presented.
WITH OMEGA/RHO DECAY PARAMETRIZATION.
WITH OMEGA/A1 DECAY PARAMETRIZATION.
Backward production of ω (1670) is observed in the reactions K − p→ φ + φ − ω 0 Λ 0 and K − p→ φ + φ − φ 0 φ 0 for | U ' Λ |<1.0 GeV 2 . The cross section for the ω (1670) → φ + φ − ω 0 decay mode is 1.90±0.35 μ b for 8.25 GeV/ c incident K − . Evidence is presented for the importance of the sequential decay, ω (1670) → B φ → ωφφ with a branching ratio ω (1670) → B φ /all ω (1670) → ωφφ =1.0± 0.25 0.00 .
No description provided.
We report on the results of the study of e + e − collisions at the highest PETRA energy of √ s = 31.57 GeV, using the 4π sr, electromagnetic and calorimetric detector Mark J. Based on 88 hadron events, and an integrated luminosity of 243 nb −1 we obtain R = σ (e + e − → hadrons)/ σ (e + e − → μ + μ − ) = 4.0 ± 0.5 (statistical) ± 6 (systematic). The R value, the measured thrust distribution and average spherocity show no evidence for the production of new quark flavors.
CORRECTIONS FOR TWO-PHOTON PROCESSES, TAU HEAVY LEPTON PRODUCTION AND INITIAL STATE RADIATIVE CORRECTIONS HAVE BEEN APPLIED.
THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 31.57 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
This paper reports on the first results of the study of e+e− collisions at s=27.4 GeV and s=27.7 GeV at PETRA, using the 4π-sr electromagnetic and calorimetric detector MARK-J. We obtain an average R=σ(e+e−→hadrons)σ(e+e−→μ+μ−)=3.8±0.3 (statistical)±0.6 (systematic) and a relative R=1.0±0.2 between the two energies. The R values, the measured thrust distribution, and average spherocity show no evidence for the production of new quark flavors.
THE RELATIVE VALUE OF R BETWEEN THESE TWO ENERGIES IS 1.0 +- 0.2.
THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 13, 17 AND 27 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.