Showing 10 of 6704 results
This article describes a determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ from the decay $B^0\to D^{*-}\ell^+\nu_\ell$ using 711 fb$^{-1}$ of Belle data collected near the $\Upsilon(4S)$ resonance. We simultaneously measure the product of the form factor normalization $\mathcal{F}(1)$ and the matrix element $|V_{cb}|$ as well as the three parameters $\rho^2$, $R_1(1)$ and $R_2(1)$, which determine the form factors of this decay in the framework of the Heavy Quark Effective Theory. The results, based on about 120,000 reconstructed $B^0\to D^{*-}\ell^+\nu_\ell$ decays, are $\rho^2=1.214\pm 0.034\pm 0.009$, $R_1(1)=1.401\pm 0.034\pm 0.018$, $R_2(1)=0.864\pm 0.024\pm 0.008$ and $\mathcal{F}(1)|V_{cb}|=(34.6\pm 0.2\pm 1.0)\times 10^{-3}$. The branching fraction of $B^0\to D^{*-}\ell^+\nu_\ell$ is measured at the same time/ we obtain a value of $\mathcal{B}(B^0 \to D^{*-}\ell^+ \nu_\ell) = (4.58 \pm 0.03 \pm 0.26) %$. The errors correspond to the statistical and systematic uncertainties. These results give the most precise determination of the form factor parameters and $\mathcal{F}(1)|V_{cb}|$ to date. In addition, a direct, model-independent determination of the form factor shapes has been carried out.
Continuum-subtracted on-resonance data as a function of the $w$ kinematic variable.
Continuum-subtracted on-resonance data as a function of the $\cos\theta_\ell$ variable.
Continuum-subtracted on-resonance data as a function of the $\cos\theta_\nu$ variable.
Continuum-subtracted on-resonance data as a function of the $|\chi|$ variable.
Pair correlations between large transverse momentum neutral pion triggers (p_T=4--7 GeV/c) and charged hadron partners (p_T=3--7 GeV/c) in central (0--20%) and midcentral (20--60%) Au+Au collisions are presented as a function of trigger orientation with respect to the reaction plane. The particles are at larger momentum than where jet shape modifications have been observed, and the correlations are sensitive to the energy loss of partons traveling through hot dense matter. An out-of-plane trigger particle produces only 26+/-20% of the away-side pairs that are observed opposite of an in-plane trigger particle. In contrast, near-side jet fragments are consistent with no suppression or dependence on trigger orientation with respect to the reaction plane. These observations are qualitatively consistent with a picture of little near-side parton energy loss either due to surface bias or fluctuations and increased away-side parton energy loss due to a long path through the medium. The away-side suppression as a function of reaction-plane angle is shown to be sensitive to both the energy loss mechanism in and the space-time evolution of heavy-ion collisions.
Delta phi / Correlation Function 3-4 GeV/c partners
Delta phi / Correlation Function 3-4 GeV/c partners
$p^{a}_{T} = 3-4$ GeV/$c$
$p^{a}_{T} = 4-5$ GeV/$c$
$p^{a}_{T} = 5-7$ GeV/$c$
$p^{a}_{T} = 3-4$ GeV/$c$
$p^{a}_{T} = 4-5$ GeV/$c$
$p^{a}_{T} = 5-7$ GeV/$c$
$I^{out}_{AA}/I^{in}_{AA}$ ratio, central collisions
$I^{out}_{AA}/I^{in}_{AA}$ ratio, central collisions
$I^{out}_{AA}/I^{in}_{AA}$ ratio, mid-central collisions
$I^{out}_{AA}/I^{in}_{AA}$ ratio, mid-central collisions
Per-Trigger Azimuthal Yields, central collisions, 4-7 x 3-4 GeV/c
Per-Trigger Azimuthal Yields, central collisions, 4-7 x 4-5 GeV/c
Per-Trigger Azimuthal Yields, central collisions, 4-7 x 5-7 GeV/c
Per-Trigger Azimuthal Yields, mid-central collisions, 4-7 x 3-4 GeV/c
Per-Trigger Azimuthal Yields, mid-central collisions, 4-7 x 4-5 GeV/c
Per-Trigger Azimuthal Yields, mid-central collisions, 4-7 x 5-7 GeV/c
Per-Trigger Azimuthal Yields, central collisions, 4-7 x 3-4 GeV/c
$p^{a}_{T} = 3-4$ GeV/$c$
$p^{a}_{T} = 4-5$ GeV/$c$
$p^{a}_{T} = 5-7$ GeV/$c$
Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_s=|\phi_t-\psi_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $\phi_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $\Delta\eta$ correlation) appears to drop with increasing $\phi_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $\phi_s$-dependence of the ridge or the away-side double-peak structure. ...
red data points
black histogram
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
dN/deta phis=045 deg, pt=0.151 GeV/c
dN/deta phis=045 deg, pt=0.153 GeV/c
dN/deta phis=090 deg, pt=0.51 GeV/c
dN/deta phis=090 deg, pt=12 GeV/c
dN/deta phis=4590 deg, pt=0.151 GeV/c
sigma vs phis pt=0.151 GeV/c
sigma vs phis pt=0.153 GeV/c
sigma vs phis pt=0.51 GeV/c
sigma vs phis pt=12 GeV/c
sigma vs pt phis=045 deg
sigma vs pt phis=090 deg
sigma vs pt phis=4590 deg
background uncertainty caps in the figure
flow uncertainty curves in the figure
leadage uncertainty arrows in the figure
total uncertainty boxes in the figure
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
0^{o} < phi_{s} < 45^{o}
45^{o} < phi_{s} < 90^{o}
Previous in-plane result published in 2004
Previous out-of-plane result published in 2004
3<p_{\text{T}}^{(t)}<4, 1<p_{\text{T}}^{(a)}<2 GeV/c, 0^{o} < phi_{s} < 45^{o}
3<p_{\text{T}}^{(t)}<4, 1<p_{\text{T}}^{(a)}<2 GeV/c, 45^{o} < phi_{s} < 90^{o}
3<p_{\text{T}}^{(t)}<4, 2<p_{\text{T}}^{(a)}<3 GeV/c, 0^{o} < phi_{s} < 45^{o}
3<p_{\text{T}}^{(t)}<4, 2<p_{\text{T}}^{(a)}<3 GeV/c, 45^{o} < phi_{s} < 90^{o}
4<p_{\text{T}}^{(t)}<6, 1<p_{\text{T}}^{(a)}<2 GeV/c, 0^{o} < phi_{s} < 45^{o}
4<p_{\text{T}}^{(t)}<6, 1<p_{\text{T}}^{(a)}<2 GeV/c, 45^{o} < phi_{s} < 90^{o}
4<p_{\text{T}}^{(t)}<6, 2<p_{\text{T}}^{(a)}<3 GeV/c, 0^{o} < phi_{s} < 45^{o}
4<p_{\text{T}}^{(t)}<6, 2<p_{\text{T}}^{(a)}<3 GeV/c, 45^{o} < phi_{s} < 90^{o}
3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
3<p_{\text{T}}^{(t)}<4 GeV/c
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}15^{o}
3<p_{\text{T}}^{(t)}<4 GeV/c, 75^{o}90^{o}
Cone region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
one region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
one region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
one region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
i region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
Pi region, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
i region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
i region, 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
d+Au, 3<p_{\text{T}}^{(t)}<4 GeV/c
20-60%, 3<p_{T}^{(t)}<4 GeV/c, (a) 0^{o}<#phi_{s}<15^{o}
20-60%, 3<p_{T}^{(t)}<4 GeV/c, (b) 75^{o}<#phi_{s}<90^{o}
20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, (a) 0^{o}<phi_{s}<15^{o}
20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, (b) 75^{o}<phi_{s}<90^{o}
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 0, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 1, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 2, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 3, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 4, jet
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 5, jet
1<p_{\text{T}}^{(a)}<2 GeV/c, jet
0-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/, slice 0, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 1, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 2, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 3, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 4, ridge
20-60% Au+Au, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, slice 5, ridge
1<p_{\text{T}}^{(a)}<2 GeV/c, ridge
jet (Deltaphi|<1.0, |Deltaeta|<0.7) 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
jet (Deltaphi|<1.0, |Deltaeta|<0.7) 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
ridge (Deltaphi|<1.0, |Deltaeta|>0.7) 4<p_{\text{T}}^{(t)}<6 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
3<p_{\text{T}}^{(t)}<4 GeV/c Ridge (75^{o}<|phi_{s}|<90^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
4<p_{\text{T}}^{(t)}<6 GeV/c Ridge (75^{o}<|phi_{s}|<90^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
3<p_{\text{T}}^{(t)}<4 GeV/c Ridge (30^{o}<|phi_{s}|<45^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
4<p_{\text{T}}^{(t)}<6 GeV/c Ridge (30^{o}<|phi_{s}|<45^{o}) / Ridge (0^{o}<|phi_{s}|<15^{o})
3<p_{\text{T}}^{(t)}<4 GeV/c Ridge (0^{o}<|phi_{s}|<15^{o}) / Jet (0^{o}<|phi_{s}|<15^{o})
4<p_{\text{T}}^{(t)}<6 GeV/c Ridge (0^{o}<|phi_{s}|<15^{o}) / Jet (0^{o}<|phi_{s}|<15^{o})
3<p_{\text{T}}^{(t)}<4 GeV/c, cone region
4<p_{\text{T}}^{(t)}<6 GeV/c, cone region
3<p_{\text{T}}^{(t)}<4 GeV/c, jetlike
4<p_{\text{T}}^{(t)}<6 GeV/c, jetlike
3<p_{\text{T}}^{(t)}<4 GeV/c, pi region
4<p_{\text{T}}^{(t)}<6 GeV/c, pi region
3<p_{\text{T}}^{(t)}<4 GeV/c, ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, ridge
fig17_ampl_pt_inclusive
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, cone region
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, jetlike
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region ridge
3<p_{\text{T}}^{(t)}<4 GeV/c, 0^{o}<phi_{s}<45^{o}, ridge
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, cone region
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, jetlike
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region ridge
3<p_{\text{T}}^{(t)}<4 GeV/c, 45^{o}<phi_{s}<90^{o}, ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, cone region
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, jetlike
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, pi region ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 0^{o}<phi_{s}<45^{o}, ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, cone region
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, jetlike
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, pi region ridge
4<p_{\text{T}}^{(t)}<6 GeV/c, 45^{o}<phi_{s}<90^{o}, ridge
jetlike eta sigma
cone peak phi sigma
jetlike phi sigma
ridge phi sigma
jetlike eta sigma
cone peak phi sigma
jetlike phi sigma
ridge phi sigma
dAu jetlike eta sigma
dAu jetlike phi sigma
cone peak centroid
cone peak centroid
cone peak centroid
cone peak centroid
cone peak centroid
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
v_{2} /3
v_{3}
v_{4}
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, 2<p_{\text{T}}^{(a)}<4 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, 1<p_{\text{T}}^{(a)}<2 GeV/c
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 0
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 1
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 2
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 3
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 4
background subtracted correlation with upper flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 5
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 0
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 1
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 2
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 3
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 4
background subtracted correlation with upper flow systematic uncertainty Difference of the above results default results in Fig.21, slice 5
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 0
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 1
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 2
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 3
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 4
background subtracted correlation with lower flow systematic uncertainty EP^{ } include |Deltaeta|<0.5 particles, slice 5
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 0
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 1
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 2
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 3
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 4
background subtracted correlation with lower flow systematic uncertainty Difference of the above results default results in Fig.21, slice 5
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 0
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 1
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 2
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 3
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 4
background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles, slice 5
background subtracted correlation Difference of the above results default results in Fig.21, slice 0
background subtracted correlation Difference of the above results default results in Fig.21, slice 1
background subtracted correlation Difference of the above results default results in Fig.21, slice 2
background subtracted correlation Difference of the above results default results in Fig.21, slice 3
background subtracted correlation Difference of the above results default results in Fig.21, slice 4
background subtracted correlation Difference of the above results default results in Fig.21, slice 5
d+Au background subtracted correlation EP^{ } include |Deltaeta|<0.5 particles
difference from default results, slice 0
difference from default results, slice 1
difference from default results, slice 2
difference from default results, slice 3
difference from default results, slice 4
difference from default results, slice 5
raw signal
bkgd <v2t*v2>
bkgd <v2t>*<v2> (previous inclusive analysis)
bkgd <v2t*v2> subtracted
bkgd <v2t>*<v2> subtracted (previous inclusive analysis)
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with default flow Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
flow background with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
raw correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
We present results on strange and multi-strange particle production in Au+Au collisions at $\sqrt{s_{NN}}=62.4$ GeV as measured with the STAR detector at RHIC. Mid-rapidity transverse momentum spectra and integrated yields of $K^{0}_{S}$, $\Lambda$, $\Xi$, $\Omega$ and their anti-particles are presented for different centrality classes. The particle yields and ratios follow a smooth energy dependence. Chemical freeze-out parameters, temperature, baryon chemical potential and strangeness saturation factor obtained from the particle yields are presented. Intermediate transverse momentum ($p_T$) phenomena are discussed based on the ratio of the measured baryon-to-meson spectra and nuclear modification factor. The centrality dependence of various measurements presented show a similar behavior as seen in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.
Correction factors (acceptance × efficiency) for the most central events ( 0−5% for KS0, Λ and Ξ; 0−20% for Ω) at mid-rapidity (|y| < 1) as a function of pT for the different particle species as obtained via embedding. The branching ratio of the measured decay channel is not factored into this plot.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Efficiency corrected pT spectra for the different centrality bins and for the various particles. Note that 7 centrality bins have been used for the KS0 and the Λ while only 6 and 3 have been used for the Ξ and Ω, respectively. Errors are statistical only. The Λ spectra are corrected for the feed-down of the Ξ decay.
Extrapolated average transverse momenta ⟨pT ⟩ as a function of dNch/dy for different particle species in Au+Au collisions at 62.4 GeV. Statistical uncertainties are represented by the error bars at the points while the systematic uncertainties are represented by the gray bars. The π, charged K and p data were extracted from Ref. [14].
KS0 dN/dpT spectra compared to the charged Kaon spectra for the event centrality of 0-5% and 30-40%. The charged Kaons data points are for rapidity range of |y| < 0.1 and were extracted from Ref. [14].
KS0 dN/dpT spectra compared to the charged Kaon spectra for the event centrality of 0-5% and 30-40%. The charged Kaons data points are for rapidity range of |y| < 0.1 and were extracted from Ref. [14].
Strange particle production yields at mid-rapidity in central Au+Au and Pb+Pb collisions versus the center of mass energy √sNN. The top panel shows results for K0S and Λ. The AGS values are from E896 [1] (centrality 0 − 5 %). The SPS values are from NA49 [20] (centrality 0 − 7 %) and the RHIC values are from STAR [4, 15] (centrality 0 − 5 %). For the multi-strange baryons Ξ and Ω (bottom panel), the SPS results are from NA57 [2] (centrality 0 − 11 %) and the RHIC values are from STAR [15, 21] (centrality 0 − 20 %).
Strange particle production yields at mid-rapidity in central Au+Au and Pb+Pb collisions versus the center of mass energy √sNN. The top panel shows results for K0S and Λ. The AGS values are from E896 [1] (centrality 0 − 5 %). The SPS values are from NA49 [20] (centrality 0 − 7 %) and the RHIC values are from STAR [4, 15] (centrality 0 − 5 %). For the multi-strange baryons Ξ and Ω (bottom panel), the SPS results are from NA57 [2] (centrality 0 − 11 %) and the RHIC values are from STAR [15, 21] (centrality 0 − 20 %).
Anti-baryon to baryon yield ratios for strange baryons versus the center of mass energy √sNN. Λ/Λ is shown in the top panel while the multi-strange baryons are on the bottom panel. The data from AGS are not corrected for the weak decay feed-down from the multistrange baryons while the data from SPS and RHIC are corrected. The lines are the results of a thermal model calculation (see text section IV A). The AGS values are from E896 [1] (centrality 0 − 5 %). The SPS values are from NA49 [20] (centrality 0 − 7 %) and the RHIC values are from STAR [4, 15] (centrality 0 − 5 %). For the multi- strange baryons Ξ and Ω (bottom panel), the SPS results are from NA57 [2] (centrality 0 − 11 %) and the RHIC values are from STAR [15, 21] (centrality 0 − 20 %).
Antibaryon-to-baryon yield ratios for strange particles and protons as a function of dNch/dy at √sNN=62.4 and 200 GeV. The p data were extracted from Ref. [14]. The √sNN=200 GeV strange hadron data were extracted from Ref. [15].
Particle-yield ratios as obtained by measurements (black dots) for the most central (0–5%) Au+Au collisions at 62.4 GeV and statistical model predictions (lines). The ratios indicated by the dashed lines (blue) were obtained by using only π, K, and protons, whereas the ratios indicated by the full lines (green) were obtained by also using the hyperons in the fit.
Chemical freeze-out temperature Tch (a) and strangeness saturation factor γs (b) as a function of the mean number of participants.
Chemical freeze-out temperature Tch (a) and strangeness saturation factor γs (b) as a function of the mean number of participants.
Temperature and baryon chemical potential obtained from thermal model fits as a function of √sNN (see Ref. [22]). The dashed lines correspond to the parametrizations given in Ref. [22]. The solid stars show the result for √sNN=62.4 and 200 GeV.
Temperature and baryon chemical potential obtained from thermal model fits as a function of √sNN (see Ref. [22]). The dashed lines correspond to the parametrizations given in Ref. [22]. The solid stars show the result for √sNN=62.4 and 200 GeV.
Ratio of baryon (solid symbols) and antibaryon (open symbols) to π- as a function of dNch/dy for √sNN=62.4 GeV (left) and √sNN=200 GeV (right). The π and p data were extracted from Ref. [14].
Ratio of baryon (solid symbols) and antibaryon (open symbols) to π- as a function of dNch/dy for √sNN=62.4 GeV (left) and √sNN=200 GeV (right). The π and p data were extracted from Ref. [14].
Ratio of baryon (solid symbols) and antibaryon (open symbols) to π- as a function of dNch/dy for √sNN=62.4 GeV (left) and √sNN=200 GeV (right). The π and p data were extracted from Ref. [14].
Ratio of baryon (solid symbols) and antibaryon (open symbols) to π- as a function of dNch/dy for √sNN=62.4 GeV (left) and √sNN=200 GeV (right). The π and p data were extracted from Ref. [14].
Ratio of baryon (solid symbols) and antibaryon (open symbols) to π− as a function of √sNN. The lines are the results of the thermal model calculation (see text Sec. 4a). The SPS values are from NA49 [20] (centrality 0–7%) and the RHIC values are from STAR [4, 15] (centrality 0–5%). For the multistrange baryons Ξ and Ω (bottom), the SPS results are from NA57 [2] (centrality 0–11%) and the RHIC values are from STAR [15, 21] (centrality 0–20%).
Nuclear modification factor RCP, calculated as the ratio between 0–10% central spectra and 40–80% peripheral spectra, for π, K0S, Λ, and Ξ particles in Au+Au collisions at 62.4 GeV. The π RCP values were extracted from Ref. [10]. The gray band on the right side of the plot shows the uncertainties on the estimation of the number of binary collisions and the gray band on the lower left side indicates the uncertainties on the number of participants.
Nuclear modification factor RCP, calculated as the ratio between 0–5% central spectra and 40–60% peripheral spectra, for Λ and Ξ particles measured in Au + Au collisions at 62.4 GeV. The gray band corresponds to the equivalent RCP curve for the Λ particles measured in Au+Au collisions at 200 GeV [15].
Λ/K0S ratio as a function of transverse momentum for different centrality classes. 0–5% (solid circles), 40–60% (open squares), and 60–80% (solid triangles) in Au+Au collisions at 62.4 GeV.
Maximum value of the Λ/K0S ratio from Au+Au collisions at 62.4 GeV (solid circles) and 200 GeV (open circles) [11] as a function of ⟨Npart⟩ for different centrality classes. The lowest ⟨Npart⟩ point corresponds to p+p collisions at 200 GeV [44]. The maximum of the Λ––/K0S from Au+Au collisions at 62.4 GeV is shown as solid triangles.
We present measurements of J/psi yields in d+Au collisions at sqrt(s_NN) = 200 GeV recorded by the PHENIX experiment and compare with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high statistical precision and are compared with two theoretical models: one with nuclear shadowing combined with final state breakup and one with coherent gluon saturation effects. To remove model dependent systematic uncertainties we also compare the data to a simple geometric model. We find that calculations where the nuclear modification is linear or exponential in the density weighted longitudinal thickness are difficult to reconcile with the forward rapidity data.
$J/\psi$ $B_{ll}$ $dN/dy$ in $p+p$ collisions as a function of rapidity. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
$J/\psi$ $B_{ll}$ $dN/dy$ in $d$+Au collisions as a function of rapidity. The $d$+Au yields are divided by the average number of nucleon-nucleon collisions $\langle N_{coll}$(0-100%)$\rangle$ = 7.6. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Mid rapidity $d$+Au —> $e^+e^-$ $J/\psi$ invariant yields at $\sqrt{s}$=200 GeV. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Forward-rapidity $J/\psi$ —> $\mu^+\mu^-$ $d$+Au Nuclear Dependence at $\sqrt{s}$ = 200 GeV. (sys. A, B systematics are relative, i.e. they multiply the $R_{dAu}$ value. The sysA uncertainty includes statistical uncertainties as well as point-to-point uncorrelated systematics, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Mid rapidity $d$+Au —> $e^+e^-$ $J/\psi$ $R_{dAu}$ at $\sqrt{s}$=200 GeV. (Sys. A, B systematics are absolute, i.e. they add/subtract directly from $R_{dAu}$. The sys. A uncertainty includes statistical uncertainties as well as point-to-point uncorrelated systematics, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
$d$+Au vs centrality vs $y$. (All uncertainties are absolute. The sys. A uncertainty includes both the statistical uncertainty and the point-to-point uncorrelated systematic, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Forward-rapidity $J/\psi$ —> $\mu^+\mu^-$ $d$+Au Nuclear Dependence at $\sqrt{s}$ = 200 GeV. (sys. A, B systematics are relative, i.e. they multiply the $R_{dAu}$ value. The sysA uncertainty includes statistical uncertainties as well as point-to-point uncorrelated systematics, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Mid rapidity $d$+Au —> $e^+e^-$ $J/\psi$ $R_{dAu}$ at $\sqrt{s}$=200 GeV. (Sys. A, B systematics are absolute, i.e. they add/subtract directly from $R_{dAu}$. The sys. A uncertainty includes statistical uncertainties as well as point-to-point uncorrelated systematics, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Forward-rapidity $J/\psi$ —> $\mu^+\mu^-$ $d$+Au Nuclear Dependence at $\sqrt{s}$ = 200 GeV. (sys. A, B systematics are relative, i.e. they multiply the $R_{CP}$ value. The sys. A uncertainty includes statistical uncertainties as well as point-to-point uncorrelated systematics, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
Mid rapidity $d$+Au —> $e^+e^-$ $J/\psi$ $R_{CP}$ at $\sqrt{s}$=200 GeV. (Sys. A, B systematics are absolute, i.e. they add/subtract directly from $R_{CP}$. The sys. A uncertainty includes statistical uncertainties as well as point-to-point uncorrelated systematics, sys. B represents uncertainties that are correlated from point to point, and sys. C represents uncertainties in the overall normalization.)
We report on the measurement of two-pion correlation functions from pp collisions at $\sqrt{s}=900$ GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the HBT radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at RHIC and at Tevatron, is not manifest in our data.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.
One-dimensional Gaussian HBT radius as a function of KT for low and high multiplicity events.
One-dimensional Gaussian HBT radius as a function of the charged particle pseudorapidity density at midrapidity. Also shown is the value of LAMBDA, the correlation strength, obtained in the fit.
One-dimensional exponential HBT radius as a function of the charged particle pseudorapidity density at midrapidity. Also shown is the value of LAMBDA, the correlation strength, obtained in the fit.
One-dimensional Gaussian HBT radius as a function of KT for three fitting methods differing by the choice of baseline parametrization.
One-dimensional Gaussian HBT radius as a function of KT. Also shown is the value of LAMBDA, the correlation strength, obtained in the fit.
One-dimensional exponential HBT radius as a function of KT. Also shown is the value of LAMBDA, the correlation strength, obtained in the fit.
Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.
CHI distribution for mass bin 340 to 520 GeV.
CHI distribution for mass bin 520 to 800 GeV.
CHI distribution for mass bin 800 to 1200 GeV.
CHI distribution for mass bin > 1200 GeV.
Centrality Ratio.
A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.
The dijet mass distribution (NUMBER OF EVENTS).
95 PCT CL upper limit of the cross section x acceptance.
Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb-1 recorded at the Large Hadron Collider. The anti-kt algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable $\chi$. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.
Inclusive jet double-differential cross sections in the |rapidity| range 0 to 0.3, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.3 to 0.8, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.8 to 1.2, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 1.2 to 2.1, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 2.1 to 2.8, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0 to 0.3, using a jet resolution R value of 0.6. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.3 to 0.8, using a jet resolution R value of 0.6. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.8 to 1.2, using a jet resolution R value of 0.6. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 1.2 to 2.1, using a jet resolution R value of 0.6. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 2.1 to 2.8, using a jet resolution R value of 0.6. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 0 to 0.3, using a jet resolution R value of 0.4. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 0.3 to 0.8, using a jet resolution R value of 0.4. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 0.8 to 1.2, using a jet resolution R value of 0.4. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 1.2 to 2.1, using a jet resolution R value of 0.4. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 2.1 to 2.8, using a jet resolution R value of 0.4. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 0 to 0.3, using a jet resolution R value of 0.6. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 0.3 to 0.8, using a jet resolution R value of 0.6. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 0.8 to 1.2, using a jet resolution R value of 0.6. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 1.2 to 2.1, using a jet resolution R value of 0.6. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 2.1 to 2.8, using a jet resolution R value of 0.6. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 340 to 520, using a jet resolution R value of 0.4. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 520 to 800, using a jet resolution R value of 0.4. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 800 to 1200, using a jet resolution R value of 0.4. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 340 to 520, using a jet resolution R value of 0.6. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 520 to 800, using a jet resolution R value of 0.6. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Dijet double-differential cross sections in the |rapidity(max)| range 800 to 1200, using a jet resolution R value of 0.6. The four (sys) errors are respectively, the Absolute JES, the Relative JES, the Unfolding and the Luminosity uncertainties.
Decays of $b$ hadrons into final states containing a $D^0$ meson and a muon are used to measure the $b\bar{b}$ production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. In the pseudorapidity interval $2 < \eta < 6$ and integrated over all transverse momenta we find that the average cross-section to produce $b$-flavoured or $\bar{b}$-flavoured hadrons is ($75.3 \pm 5.4 \pm 13.0$) microbarns.
The cross section for b-flavoured hadrons (HADRON/B) as a function of pseudorapidity in proton-proton collisions at a centre-of-mass energy of 7 TeV. Cross sections are shown using fragmentation fractions both from LEP and from the Tevatron. See comment above regarding this latter point.
The cross section for b-flavoured hadrons (HADRON/B) over the pseudorapidity range 2.0-6.0 in proton-proton collisions at a centre-of-mass energy of 7 TeV. Cross sections are shown using fragmentation fractions both from LEP and from the Tevatron. See comment above regarding this latter point.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.