Date

Diffractive Production of $K^0_s K^0_s \pi^+ \pi^- \pi^-$ in $\pi^-N$ Interactions at 200-GeV/c

Chang, C.C. ; Davis, T.C. ; Diamond, R.N. ; et al.
Phys.Rev.D 29 (1984) 1888-1894, 1984.
Inspire Record 194648 DOI 10.17182/hepdata.23730

The diffractive dissociation of a 200-GeV/c π− beam into KS0KS0π+π−π− has been observed. The diffractive KS0KS0π+π−π− cross section is 1.59±0.78 μb. The ratio of the diffractive KS0KS0π+π−π− cross section to the diffractive KS0KS0π− cross section is 0.40±0.13, which is in good agreement with a diffractive-fragmentation-model prediction of 0.36. There is evidence for simultaneous production of K*− and K*+ in the diffractive KS0KS0π+π−π− sample. The K*+−KS0π−+ mass distribution shows an enhancement near 1.95 GeV.

3 data tables match query

No description provided.

No description provided.

No description provided.


Resonance Production in Diffractive $\pi^- N \to K^0_s K^0_s \pi^- N^{\prime}$ at 200-GeV/c

Chen, T.Y. ; Jenkins, E.W. ; Johnson, K.J. ; et al.
Phys.Rev.D 28 (1983) 2304, 1983.
Inspire Record 182627 DOI 10.17182/hepdata.23787

The reaction π−N→KS0KS0π−N′ at 200 GeV/c has been observed with a sensitivity of 450±150 events/μb. The KS0KS0π− system exhibits substantial K*−(890)K0 production. Also produced are f0(1270)π−, f′(1515)π−, and K*−(1430)K0 final states. These resonances occur predominantly at threshold. The diffractive KS0KS0π− cross section is 3.4±1.1 μb. An enhancement near the A3−(1680) is observed in the KS0KS0π− invariant-mass distribution.

1 data table match query

No description provided.


The Contribution of $q \bar{q}$ Annihilations to Dimuon Production in $\pi N$ Interactions

Reece, C. ; LeBritton, J. ; McCal, D. ; et al.
Phys.Lett.B 85 (1979) 427-431, 1979.
Inspire Record 7886 DOI 10.17182/hepdata.27323

We present data on dimuon production by 16 GeV π + and π − beams on a Cu target. From the data we evaluate, for π − N collisions, the fraction of dimuon events that originate from the annihilation process q q ̄ → μ + μ − . Using this information the experimentally determined cross section for the process q q ̄ → μ + μ − is observed to be in agreement with the Drell-Yan model over a wide range of incident energies. The observed deviations from exact scaling are of the order predicted by QCD calculations for the Q 2 -dependence of the nucleon and the pion structure function.

2 data tables match query

CROSS SECTIONS ARE PER COPPER NUCLEUS.

CROSS SECTIONS ARE PER COPPER NUCLEUS.


Production of $J/\psi$ in 16-{GeV} and 22-{GeV} $\pi^-$ Cu Collisions

LeBritton, J. ; McCal, D. ; Melissinos, A.C. ; et al.
Phys.Lett.B 81 (1979) 401-404, 1979.
Inspire Record 7053 DOI 10.17182/hepdata.50278

We have measured the inclusive production of J ψ in 16 and 22 GeV π − copper collisions in a wide aperture magnetic spectrometer. The cross section per Cu nucleus for x > 0 corrected for branching ratio is 64 ± 38 nb at 16 GeV and 196 ± 38 nb at 22 GeV. As threshold is approached, the mean values of the Feynman x distribution increase and the cross section for J ψ production drops steeply. This can be understood in terms of the quark-fusion model where the antiquark content of the pion makes an increasingly significant contribution as M 2 s increases.

0 data tables match query

Observation of Double phi Meson Production in 400-GeV/c Proton - Nucleon Interactions

Davenport, T.F. ; Albright, John R. ; Goldman, J.H. ; et al.
Phys.Rev.D 33 (1986) 2519, 1986.
Inspire Record 218616 DOI 10.17182/hepdata.23536

The production of φ-meson pairs has been observed in 400-GeV/c proton-nucleon interactions at the Fermilab multiparticle spectrometer in the inclusive reaction pN→φφ+X, where each φ decays to a K+K− pair. A fast (200 nsec) high-level processor was used to selectively trigger on events containing two pairs of oppositely charged kaons having low invariant masses. The experimental apparatus and trigger processor are described. The cross section for φφ production and an upper limit for ηc production are presented.

1 data table match query

No description provided.


Inclusive Strange Particle Production in Single Vee Events in 200-GeV/c pi- n Interactions

Mikocki, S. ; Ficenec, J.R. ; Torres, S. ; et al.
Phys.Rev.D 34 (1986) 42, 1986.
Inspire Record 218617 DOI 10.17182/hepdata.23427

For the reaction π−N→V0X, where V0 is a Ks0, Λ, and Λ¯ and X are charged particles, we measured the transverse- and longitudinal-momentum distributions, and inclusive cross sections for the V0 and for K*±(892), Σ±(1385), and Ξ±(1321). We compare our results with predictions of quark-counting rules, and conclude that valence quarks play an important role in strange-particle production.

1 data table match query

No description provided.


J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 054912, 2011.
Inspire Record 894560 DOI 10.17182/hepdata.100086

Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.

6 data tables match query

J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Version 2
J/psi Production in sqrt (s_NN)= 200 GeV Cu+Cu Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, Christine Angela ; et al.
Phys.Rev.Lett. 101 (2008) 122301, 2008.
Inspire Record 776624 DOI 10.17182/hepdata.57327

Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.

12 data tables match query

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Measurement of $J/\psi$ at forward and backward rapidity in $p+p$, $p+A$l, $p+A$u, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200~{\rm GeV}$

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 102 (2020) 014902, 2020.
Inspire Record 1762446 DOI 10.17182/hepdata.98626

Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.

1 data table match query

J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.


Search for $B^{+}\to K^{+}\nu\bar{\nu}$ decays using an inclusive tagging method at Belle II

The Belle-II collaboration Abudinén, F. ; Adachi, I. ; Adamczyk, K. ; et al.
Phys.Rev.Lett. 127 (2021) 181802, 2021.
Inspire Record 1860766 DOI 10.17182/hepdata.130199

A search for the flavor-changing neutral-current decay $B^{+}\to K^{+}\nu\bar{\nu}$ is performed at the Belle II experiment at the SuperKEKB asymmetric energy electron-positron collider. The results are based on a data sample corresponding to an integrated luminosity of $63\,\mbox{fb}^{-1}$ collected at the $\Upsilon{(4S)}$ resonance and a sample of $9\,\mbox{fb}^{-1}$ collected at an energy $60\mathrm{\,Me\kern -0.1em V}$ below the resonance. A novel measurement method is employed, which exploits topological properties of the $B^{+}\to K^{+}\nu\bar{\nu}$ decay that differ from both generic bottom-meson decays and light-quark pair production. This inclusive tagging approach offers a higher signal efficiency compared to previous searches. No significant signal is observed. An upper limit on the branching fraction of $B^{+}\to K^{+}\nu\bar{\nu}$ of $4.1 \times 10^{-5}$ is set at the 90% confidence level.

0 data tables match query