The differential cross sections for lepton pair production in e+e− annihilation at 29 GeV have been measured and found to be in good agreement with the standard model of the electroweak interaction. With the assumption of e−μ−τ universality, the weak neutral-current couplings are determined to be ga2=0.23±0.05 and gv2=0.03±0.04.
Numerical values supplied by M.Levi.
Data requested from authors.
Extrapolated to full angular range.
The total momentum and transverse momentum spectra of electrons in e+e− annihilation at 29 GeV have been measured. The inclusive cross section is determined to be 14.4±1.6±5.2 pb for momenta greater than 2 GeV/c. The average semielectronic branching ratios of charm and bottom quarks are measured to be (6.3±1.2±2.1)% and (11.6±2.1±1.7)%, respectively. The fragmentation function for bottom quarks is determined to be peaked at high z, with 〈z〉b=0.75±0.05±0.04.
PT is the transverse momentum of the muon relative to the event thrust axis.
PT is the transverse momentum of the muon relative to the event thrust axis.
η production has been investigated by the Mark II collaboration at the SLAC e+e− storage ring PEP. η particles are reconstructed by their γγ decay mode. The η fragmentation function has been measured and found to be in good agreement with the Lund-model prediction. η′ production has been measured for the first time in high-energy e+e− annihilation. There is evidence at the 3σ level for Ds± decay into ηπ± and η′π±.
Numerical values supplied by G.Wormser.
Z = 0.0 point extrapolated using LUND fragmentation model.
Z = 0.0 point extrapolated using LUND fragmentation model.
Inclusive Ω− production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. From an integrated luminosity of 207 pb−1, we determine a production rate of 0.014±0.006±0.004 Ω−, Ω¯+ per hadronic event. This is roughly 35 times the Lund-model prediction of 0.0004 Ω−, Ω¯+ per hadronic event, but comparable to the Webber-model prediction of 0.006 Ω−, Ω¯+ per hadronic event. The large rate of Ω− production, compared with production rates for other baryons, and with theoretical predictions based on diquark models, indicates that spin suppression does not hold for Ω− production.
Radiatively corrected inclusive cross section.
Extrapolation to full momentum range.
Inclusive Ξ− production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. From an integrated luminosity of 207 pb−1, we determine a production rate of 0.017±0.004±0.004 Ξ−+Ξ¯+ per hadronic event. A search for Ξ*0(1530)→Ξ−π+ leads to an upper limit of N(Ξ*0)/N(Ξ−)<0.35 at a 90% confidence level.
Numerical values supplied by S. Klein.
Extrapolation over full x range using LUND Monte Carlo.
The cross section for the production of π+π− or K+K− pairs in γγ interactions is measured for mππ between 1.7 and 3.5 GeV/c2 and for two intervals of γγ center-of-mass scattering angle. Results are compared with predictions of a QCD model.
Data read off graph.
Data read off graph.
We have made a detailed comparison of the charged-particle flow in three-jet events (e+e−→qq¯g) and radiative two-jet events (e+e−→qq¯γ) from e+e− annihilation at Ec.m.=29 GeV. Accurate comparisons can be made because these two event types have similar topologies. In the angular region between the quark and antiquark jets, we observe substantially fewer charged tracks in the two-jet events than in the radiative three-jet events.
No description provided.
No description provided.
No description provided.
We report a measurement of the inclusive charged-particle distribution for gluon jets derived from nearly threefold-symmetric three-jet events taken at center-of-mass energy of 29 GeV in e+e− annihilation. The charged-particle spectrum for these jets is observed to fall off more rapidly than those of quark jets of the same energy.
Errors include both statistics and the uncertainty in correction factors. X is defined at the energy of the individual particle divided by the total energy of the jet to which it is assigned.
Inclusive ψ production in e+e− annihilation at 29 GeV has been measured with the Mark II detector. The ψ cross section is found to be 1.1±0.5±0.4 pb. After subtraction of the expected contribution from B decay, an upper limit of 0.02σμμ is obtained for other sources of ψ production.
No description provided.
We have searched for the annihilation of e+e− into the exclusive channels e±τ∓ and μ±τ∓ at √s =29 GeV, using 226 and 133 pb−1, respectively, of data taken with the Mark II detector at the SLAC storage ring PEP. The resulting candidate sample is compatible with the expected background from τ pair production. Our analysis yields 95%-C.L. cross-section limits of σeτ/σμμ<1.8×10−3 and σμτ/σμμ<6.1×10−3, where σμμ is the QED cross section for production of a lepton pair. This is the first high-Q2 test of lepton-flavor conservation involving τ leptons.
95 pct confidence upper limits.