Date

Proton, deuteron and triton flow measurements in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Eur.Phys.J.A 59 (2023) 80, 2023.
Inspire Record 2132332 DOI 10.17182/hepdata.152804

High precision measurements of flow coefficients $v_{n}$ ($n = 1 - 4$) for protons, deuterons and tritons relative to the first-order spectator plane have been performed in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV with the High-Acceptance Di-Electron Spectrometer (HADES) at the SIS18/GSI. Flow coefficients are studied as a function of transverse momentum $p_{t}$ and rapidity $y_{cm}$ over a large region of phase space and for several classes of collision centrality. A clear mass hierarchy is found for the slope of $v_{1}$, $d v_{1}/d y^{\prime}|_{y^{\prime} = 0}$ where $y^{\prime}$ is the scaled rapidity, and for $v_{2}$ at mid-rapidity. Scaling with the number of nucleons is observed for the $p_{t}$ dependence of $v_{2}$ and $v_{4}$ at mid-rapidity, which is indicative for nuclear coalescence as the main process responsible for light nuclei formation. $v_{2}$ is found to scale with the initial eccentricity $\langle \epsilon_{2} \rangle$, while $v_{4}$ scales with $\langle \epsilon_{2} \rangle^{2}$ and $\langle \epsilon_{4} \rangle$. The multi-differential high-precision data on $v_{1}$, $v_{2}$, $v_{3}$, and $v_{4}$ provides important constraints on the equation-of-state of compressed baryonic matter.

0 data tables

Kinematic dependence of azimuthal anisotropies in $p$ $+$ Au, $d$ $+$ Au, $^3$He $+$ Au at $\sqrt{s_{_{NN}}}$ = 200 GeV 

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 105 (2022) 024901, 2022.
Inspire Record 2026169 DOI 10.17182/hepdata.132366

There is strong evidence for the formation of small droplets of quark-gluon plasma in $p/d/^{3}$He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in $p$+$p$/Pb collisions at the Large Hadron Collider. In particular, the analysis of data at RHIC for different geometries obtained by varying the projectile size and shape has proven insightful. In the present analysis, we find excellent agreement with the previously published PHENIX at RHIC results on elliptical and triangular flow with an independent analysis via the two-particle correlation method, which has quite different systematic uncertainties and an independent code base. In addition, the results are extended to other detector combinations with different kinematic (pseudorapidity) coverage. These results provide additional constraints on contributions from nonflow and longitudinal decorrelations.

0 data tables

Directed, elliptic and higher order flow harmonics of protons, deuterons and tritons in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Rev.Lett. 125 (2020) 262301, 2020.
Inspire Record 1797626 DOI 10.17182/hepdata.102468

Flow coefficients $v_{n}$ of the orders $n = 1 - 6$ are measured with the High-Acceptance DiElectron Spectrometer (HADES) at GSI for protons, deuterons and tritons as a function of centrality, transverse momentum and rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 2.4$ GeV. Combining the information from the flow coefficients of all orders allows to construct for the first time, at collision energies of a few GeV, a multi-differential picture of the angular emission pattern of these particles. It reflects the complicated interplay between the effect of the central fireball pressure on the emission of particles and their subsequent interaction with spectator matter. The high precision information on higher order flow coefficients is a major step forward in constraining the equation-of-state of dense baryonic matter.

0 data tables

Measurement of the azimuthal anisotropy of charged particles produced in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 997, 2018.
Inspire Record 1686834 DOI 10.17182/hepdata.84427

Measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV are presented using a data sample corresponding to 0.49 $\mathrm{nb}^{-1}$ integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for "ultra-central" collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, $v_{2}-v_{7}$, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics $v_{n}$ over wide ranges of the transverse momentum, 0.5 $

372 data tables

The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%

The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%

The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%

More…

Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 112302, 2016.
Inspire Record 1414638 DOI 10.17182/hepdata.72069

We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle$, where $\phi_1-\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta\eta = \eta_1-\eta_2$. Non-zero {\vthree} is directly related to the previously observed large-$\Delta\eta$ narrow-$\Delta\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\{2\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\{2\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2\{2\}$ for central collisions shows a minimum near {\snn}$=20$ GeV.

81 data tables

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

More…

Measurement of the correlation between flow harmonics of different order in lead-lead collisions at $\sqrt{s_{NN}}$=2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.C 92 (2015) 034903, 2015.
Inspire Record 1357991 DOI 10.17182/hepdata.68950

Correlations between the elliptic or triangular flow coefficients $v_m$ ($m$=2 or 3) and other flow harmonics $v_n$ ($n$=2 to 5) are measured using $\sqrt{s_{NN}}=2.76$ TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated lumonisity of 7 $\mu$b$^{-1}$. The $v_m$-$v_n$ correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, $v_3$ is found to be anticorrelated with $v_2$ and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities $\epsilon_2$ and $\epsilon_3$. On the other hand, it is observed that $v_4$ increases strongly with $v_2$, and $v_5$ increases strongly with both $v_2$ and $v_3$. The trend and strength of the $v_m$-$v_n$ correlations for $n$=4 and 5 are found to disagree with $\epsilon_m$-$\epsilon_n$ correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to $v_n$ and a nonlinear term that is a function of $v_2^2$ or of $v_2v_3$, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to $v_4$ and $v_5$ are found to be consistent with previously measured event-plane correlations.

212 data tables

$v_{2}$ data for various $q_2$ bins, Centrality 0-5%.

$v_{3}$ data for various $q_2$ bins, Centrality 0-5%.

$v_{4}$ data for various $q_2$ bins, Centrality 0-5%.

More…

Long-range pseudorapidity dihadron correlations in $d$+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 747 (2015) 265-271, 2015.
Inspire Record 1346551 DOI 10.17182/hepdata.72303

Dihadron angular correlations in $d$+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity ($\Delta\eta$) on the near side (i.e. relative azimuth $\Delta\phi\sim0$). This correlated yield as a function of $\Delta\eta$ appears to scale with the dominant, primarily jet-related, away-side ($\Delta\phi\sim\pi$) yield. The Fourier coefficients of the $\Delta\phi$ correlation, $V_{n}=\langle\cos n\Delta\phi\rangle$, have a strong $\Delta\eta$ dependence. In addition, it is found that $V_{1}$ is approximately inversely proportional to the mid-rapidity event multiplicity, while $V_{2}$ is independent of it with similar magnitude in the forward ($d$-going) and backward (Au-going) directions.

23 data tables

Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.

Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.

Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for -4.5 < $\Delta\eta$ < -2 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.

More…

Measurement of the higher-order anisotropic flow coefficients for identified hadrons in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 051902, 2016.
Inspire Record 1332239 DOI 10.17182/hepdata.110967

New PHENIX measurements of the anisotropic flow coefficients $v_2\{\Psi_2\}$, $v_3\{\Psi_3\}$, $v_4\{\Psi_4\}$ and $v_4\{\Psi_2\}$ for identified particles ($\pi^{\pm}$, $K^{\pm}$, and $p+\bar{p}$) obtained relative to the event planes $\Psi_n$ in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV are presented as functions of collision centrality and particle transverse momenta $p_T$. The $v_n$ coefficients show characteristic patterns consistent with hydrodynamical expansion of the matter produced in the collisions. For each harmonic $n$, a modified valence quark number $n_q$ scaling plotting $v_n/(n_q)^{n/2}$ versus ${\rm KE}_T/n_q$ is observed to yield a single curve for all the measured particle species for a broad range of transverse kinetic energies ${\rm KE}_T$. A simultaneous blast wave model fit to the observed particle spectra and $v_n(p_T)$ coefficients identifies spatial eccentricities $s_n$ at freeze-out, which are much smaller than the initial-state geometric values.

0 data tables

Measurement of long-range pseudorapidity correlations and azimuthal harmonics in $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV proton-lead collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.C 90 (2014) 044906, 2014.
Inspire Record 1315325 DOI 10.17182/hepdata.66357

Measurements of two-particle correlation functions and the first five azimuthal harmonics, $v_1$ to $v_5$, are presented, using 28 $\mathrm{nb}^{-1}$ of $p$+Pb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV measured with the ATLAS detector at the LHC. Significant long-range "ridge-like" correlations are observed for pairs with small relative azimuthal angle ($|\Delta\phi|<\pi/3$) and back-to-back pairs ($|\Delta\phi| > 2\pi/3$) over the transverse momentum range $0.4 < p_{\rm T} < 12$ GeV and in different intervals of event activity. The event activity is defined by either the number of reconstructed tracks or the total transverse energy on the Pb-fragmentation side. The azimuthal structure of such long-range correlations is Fourier decomposed to obtain the harmonics $v_n$ as a function of $p_{\rm T}$ and event activity. The extracted $v_n$ values for $n=2$ to 5 decrease with $n$. The $v_2$ and $v_3$ values are found to be positive in the measured $p_{\rm T}$ range. The $v_1$ is also measured as a function of $p_{\rm T}$ and is observed to change sign around $p_{\rm T}\approx 1.5$-2.0 GeV and then increase to about 0.1 for $p_{\rm T}>4$ GeV. The $v_2(p_{\rm T})$, $v_3(p_{\rm T})$ and $v_4(p_{\rm T})$ are compared to the $v_n$ coefficients in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}} =2.76$ TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average $p_{\rm T}$ of particles produced in the two collision systems.

92 data tables

The distributions of $N_{ch}^{rec}$ for MB and MB+HMT after applying an event-by-event weight, errors are statistical.

The distributions of $E_{T}^{Pb}$ [GeV] for MB and MB+HMT after applying an event-by-event weight, errors are statistical.

Per-trigger yield in 2D, $Y$($\Delta\phi$,$\Delta\eta$), for events with $E_{T}^{Pb} <$ 10 GeV and $N_{ch}^{rec} \geq$ 200 and recoil-subtracted per-trigger yield, $Y^{sub}$($\Delta\phi$,$\Delta\eta$) for events with $N_{ch}^{rec} \geq$ 200. Errors are statistical.

More…

Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3157, 2014.
Inspire Record 1311487 DOI 10.17182/hepdata.65771

ATLAS measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_{NN}}=2.76$ TeV are shown using a dataset of approximately 7 $\mu$b$^{-1}$ collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta $0.5

220 data tables

The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 0-2%.

The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 2-5%.

The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 5-10%.

More…