The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $\sigma(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $\sigma(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $\sigma(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=\sigma(tq)/\sigma(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/\Lambda^2 < 0.06$ and $-0.87 < C_{\phi Q}^{3}/\Lambda^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $\sigma(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.
The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.
The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.
The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)
We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.
Differential fiducial cross section for CEP of $\pi^+\pi^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $\pi^+$, $\pi^-$ - $p_{\mathrm{T}} > 0.2~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$
Differential fiducial cross section for CEP of $K^+K^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $K^+$, $K^-$ - $p_{\mathrm{T}} > 0.3~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(K^+), p_{\mathrm{T}}(K^-)) < 0.7~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$
Differential fiducial cross section for CEP of $p\bar{p}$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $p$, $\bar{p}$ - $p_{\mathrm{T}} > 0.4~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(p), p_{\mathrm{T}}(\bar{p})) < 1.1~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$
The production of J/$\psi$ mesons is studied in proton-lead collisions at the centre-of-mass energy per nucleon pair $\sqrt{s_{\text{NN}}}=8.16$ TeV with the LHCb detector at the LHC. The double differential cross-sections of prompt and nonprompt J/$\psi$ production are measured as functions of the J/$\psi$ transverse momentum and rapidity in the nucleon-nucleon centre-of-mass frame. Forward-to-backward ratios and nuclear modification factors are determined. The results are compared with theoretical calculations based on collinear factorisation using nuclear parton distribution functions, on the colour glass condensate or on coherent energy loss models.
The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame measured in the proton-lead beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.
The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $-5.0 < y^* < -2.5$ in the nucleon-nucleon centre-of-mass frame measured in the lead-proton beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty
The double-differential cross sections for prompt $J/\psi$ production, assuming no polarisation, as a function of transverse momentum for the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.
Using the KEDR detector at the VEPP-4M $e^+e^-$ collider, we have measured the values of $R_{\text{uds}}$ and $R$ at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than $3.3\%$ at most of energy points with a systematic uncertainty of about $2.1\%$. At the moment it is the most accurate measurement of $R(s)$ in this energy range.
Measured values of $R_{\rm{uds}}(s)$ and $R(s)$ with statistical and systematic uncertainties.
Using a data sample collected with the BESIII detector operating at the BEPCII storage ring, we observe a new neutral state $Z_c(3900)^{0}$ with a significance of $10.4\sigma$. The mass and width are measured to be $3894.8\pm2.3\pm3.2$ MeV/$c^2$ and $29.6\pm8.2\pm8.2$~MeV, respectively, where the first error is statistical and the second systematic. The Born cross section for $e^+e^-\to\pi^0\pi^0 J/\psi$ and the fraction of it attributable to $\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi$ in the range $E_{cm}=4.19-4.42$ GeV are also determined. We interpret this state as the neutral partner of the four-quark candidate $Z_c(3900)^\pm$.
Efficiencies, yields, $R=\frac{\sigma(e^+e^-\to\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi)}{\sigma(e^+e^-\to\pi^0\pi^0 J/\psi)}$, and $\pi^0\pi^0 J/\psi$ Born cross sections at each energy point. For $N(Z_c^0)$ and $N(\pi^0\pi^0 J/\psi)$ errors and upper limits are statistical only. For $R$ and $\sigma_{\rm Born}$, the first errors and statistical and second errors are systematic. The statistical uncertainties on the efficiencies are negligible. Upper limits of $R$ (90$\%$ confidence level) include systematic errors.
The cross section of the diffractive process e^+p -> e^+Xp is measured at a centre-of-mass energy of 318 GeV, where the system X contains at least two jets and the leading final state proton p is detected in the H1 Very Forward Proton Spectrometer. The measurement is performed in photoproduction with photon virtualities Q^2 <2 GeV^2 and in deep-inelastic scattering with 4 GeV^2<Q^2<80 GeV^2. The results are compared to next-to-leading order QCD calculations based on diffractive parton distribution functions as extracted from measurements of inclusive cross sections in diffractive deep-inelastic scattering.
Integrated $e^{+}p$ diffractive dijet cross sections in $\gamma p$. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation is also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.
Integrated $e^{+}p$ diffractive dijet cross sections in DIS. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation and the radiative correction ($1+\delta_{\text{rad}}$) are also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.
Ratio of integrated $e^{+}p$ diffractive dijet cross sections for $Q^2<2\,\text{GeV}^2$ (photoproduction) to $Q^2>4\,\text{GeV}^2$ (DIS).
We present the midrapidity charged pion invariant cross sections and the ratio of $\pi^-$-to-$\pi^+$ production ($5<p_T<13$ GeV/$c$), together with the double-helicity asymmetries ($5<p_T<12$ GeV/$c$) in polarized $p$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. The cross section measurements are consistent with perturbative calculations in quantum chromodynamics within large uncertainties in the calculation due to the choice of factorization, renormalization, and fragmentation scales. However, the theoretical calculation of the ratio of $\pi^-$-to-$\pi^+$ production when considering these scale uncertainties overestimates the measured value, suggesting further investigation of the uncertainties on the charge-separated pion fragmentation functions is needed. Due to cancellations of uncertainties in the charge ratio, direct inclusion of these ratio data in future parameterizations should improve constraints on the flavor dependence of quark fragmentation functions to pions. By measuring charge-separated pion asymmetries, one can gain sensitivity to the sign of $\Delta G$ through the opposite sign of the up and down quark helicity distributions in conjunction with preferential fragmentation of positive pions from up quarks and negative pions from down quarks. The double-helicity asymmetries presented are sensitive to the gluon helicity distribution over an $x$ range of $\sim$0.03--0.16.
Invariant cross section for $\pi^+$ and $\pi^-$ hadrons, as well as the statistical and systematic uncertainties. In addition, there is an absolute scale uncertainty of 9.6$\%$.
Double-helicity asymmetries and statistical uncertainties for $\pi^+$ and $\pi^-$ hadrons. The primary systematic uncertainties, which are fully correlated between points, are $1.4\times10^{-3}$ from relative luminosity and a $^{+7.0\%}_{-7.7\%}$ scaling uncertainty from beam polarization.
Ratio of charged pion cross section, as shown in Fig.6.
Inclusive jet, dijet and trijet differential cross sections are measured in neutral current deep-inelastic scattering for exchanged boson virtualities 150 < Q^2 < 15000 GeV^2 using the H1 detector at HERA. The data were taken in the years 2003 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. Double differential Jet cross sections are obtained using a regularised unfolding procedure. They are presented as a function of Q^2 and the transverse momentum of the jet, P_T^jet, and as a function of Q^2 and the proton's longitudinal momentum fraction, Xi, carried by the parton participating in the hard interaction. In addition normalised double differential jet cross sections are measured as the ratio of the jet cross sections to the inclusive neutral current cross sections in the respective Q^2 bins of the jet measurements. Compared to earlier work, the measurements benefit from an improved reconstruction and calibration of the hadronic final state. The cross sections are compared to perturbative QCD calculations in next-to-leading order and are used to determine the running coupling and the value of the strong coupling constant as alpha_s(M_Z) = 0.1165 (8)_exp (38)_{pdf,theo}.
Double-differential inclusive jet cross sections measured as a function of Q**2 and PT(JET) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.5% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.
Double-differential dijet cross sections measured as a function of Q**2 and MEAN(PT(2JET)) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.
Double-differential dijet cross sections measured as a function of Q**2 and XI(2) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.
The first observation of $Z$ boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of $\sqrt{s_{NN}}=5~\text{TeV}$ is presented. The data sample corresponds to an integrated luminosity of $1.6~\text{nb}^{-1}$ collected with the LHCb detector. The $Z$ candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above $20~\text{GeV}/c$. The invariant dimuon mass is restricted to the range $60-120~\text{GeV}/c^2$. The $Z$ production cross-section is measured to be \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{fwd})&=&13.5^{+5.4}_{-4.0}\text{(stat.)}\pm1.2\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the proton beam and \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{bwd}) & =&10.7^{+8.4}_{-5.1}\text{(stat.)}\pm1.0\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the lead beam, where the first uncertainty is statistical and the second systematic.
The measured Z production cross-sections in proton-lead collisions, measured in the fiducial region defined in the table, in the forward and backward directions. The statistical uncertainty is defined as the 68% confidence interval with symmetric coverage assuming that the number of candidates follows a Poisson distribution.
The forward-backward ratio measured in the overlap region 2.5 < ABS(YRAP) < 4.0. The first uncertainty is statistical, defined as the 68% confidence interval with symmetric coverage. The second uncertainty is systematic and includes the uncertainty on the acceptance correction factor, BETA, for the difference in the detector acceptance of the muons between the forward and backward directions.
Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons in different selected reference frames provides another handle to distinguish the contributions of these two major reaction types. Again, dependences of the alignment on $x_{F}$ and on $M_{p\mathrm{V}}$ are found. Most of the observations can be traced back to the existence of several excited baryon states contributing to $\omega$ production which are absent in the case of the $\phi$ meson. Removing the low-mass $M_{p\mathrm{V}}$ resonant region, the OZI rule is found to be violated by a factor of eight, independently of $x_\mathrm{F}$.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI) for different cuts on the vector meson momentum P(V). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Spin alignment RHO(00) extracted from the helicity angle distributions for PHI and OMEGA production, in the latter case with various cuts on P(V). The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.