None
No description provided.
No description provided.
No description provided.
The reaction K − p → K − π − π + p has been measured at 25 and 40 GeV/ c at the Serpukhov Proton Accelerator. The production cross section at 25 and 40 GeV/ c as a function of momentum transfer and K ππ mass is presented, and results of the partial-wave analysis of the K ππ system yielding information about Q(1300), K ∗ (1400) and L(1770) mesons are discussed.
No description provided.
Measurements are presented of differential dijet cross sections in diffractive photoproduction (Q^2<0.01 GeV^2) and deep-inelastic scattering processes (DIS, 4<Q^2<80 GeV^2). The event topology is given by ep-> e X Y, in which the system X, containing at least two jets, is separated from a leading low-mass proton remnant system Y by a large rapidity gap. The dijet cross sections are compared with NLO QCD predictions based on diffractive parton densities previously obtained from a QCD analysis of inclusive diffractive DIS cross sections by H1. In DIS, the dijet data are well described, supporting the validity of QCD factorisation. The diffractive DIS dijet data are more sensitive to the diffractive gluon density at high fractional parton momentum than the measurements of inclusive diffractive DIS. In photoproduction, the predicted dijet cross section has to be multiplied by a factor of approximately 0.5 for both direct and resolved photon interactions to describe the measurements. The ratio of measured dijet cross section to NLO prediction in photoproduction is a factor 0.5+-0.1 smaller than the same ratio in DIS. This suppression is the first clear observation of QCD hard scattering factorisation breaking at HERA. The measurements are also compared to the two soft colour neutralisation models SCI and GAL. The SCI model describes diffractive dijet production in DIS but not in photoproduction. The GAL model fails in both kinematic regions.
Differential cross section for DIS events as a function of Z_Pomeron.
Differential cross section for DIS events as a function of LOG10(X_Pomeron).
Differential cross section for DIS events as a function of W.
The differential cross section of pp scattering has been measured in the energy region 100–300 GeV and in the t -range 0.002 < | t | < 0.04 (GeV/| c ) 2 . The results on the real part of the scattering amplitude agrees with dispersion relation calculations. We also report on our determination of the slope parameter b together with an analysis of the world data of b for different hadrons and different t -values. It is shown that the data are consistent with the hypothesis of a universal shrinkage of the hadronic diffraction cone at high energies.
FROM FITS TO D(SIG)/DT IN THE COULOMB-NUCLEAR INTERFERENCE REGION, USING TOTAL CROSS SECTION VALUES FROM A. S. CARROLL ET AL., PL 80B, 423 (1979). ERRORS INCLUDE STATISTICAL ERRORS AND ERRORS IN NORMALIZATION AND IN SIG.
The differential cross section of π − p scattering has been measured in the energy region 100–345 GeV and in the t -range 0.002<| t |< 0.04 (GeV/ c ) 2 . The real part of the π − p scattering amplitude has been extracted from the data. The results show that the real part continues to increase with energy. The energy dependence of the slope parameter has also been determined. The shrinkage found expressed in terms of the slope of the pomeron trajectory is2 α ′ p =0.23±0.04 (GeV/ c ) −2 . This agrees with the energy dependence found at larger| t |-values.
RE(AMP)/IM(AMP) (REAL/IMAG) AND SLOPE PARAMETERS DEDUCED FROM A FIT TO D(SIG)/DT IN T HE COULOMB INTERFERENCE REGION (-T = 0.002 TO 0.04 GEV**2).
The Sigma^- mean squared charge radius has been measured in the space-like Q^2 range 0.035-0.105 GeV^2/c^2 by elastic scattering of a Sigma^- beam off atomic electrons. The measurement was performed with the SELEX (E781) spectrometer using the Fermilab hyperon beam at a mean energy of 610 GeV/c. We obtain
Total systematic errors are given.
A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \leq Q^2 \leq 1600 \rm GeV^2$, triple differentially in $\xpom$, $Q^2$ and $\beta = x / \xpom$, where $x$ is the Bjorken scaling variable. At low $\xpom$, the data are consistent with a factorisable $\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\alphapom(0)= 1.118 \pm 0.008 {\rm (exp.)} ^{+0.029}_{-0.010} {\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\beta$ dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the $Q^2$ range studied. Total and differential cross sections are also measured for the diffractive charged current process $e^+ p \to \bar{\nu}_e XY$ and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current $ep$ cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on $Q^2$ at fixed $\xpom$ and $x$ or on $x$ at fixed $Q^2$ and $\beta$.
Reduced cross section from the Minimum Bias data sample taken in 1997.
Reduced cross section from the Minimum Bias data sample taken in 1997.
Reduced cross section from the complete ('all') data sample taken in 1997.
Results of systematic measurements of the asymmetry parameter in the elastic scattering of pions on polarized protons at 1.4–2.1 GeV/ c in the backward hemisphere are presented together with a test of the isospin invariance of the data set available on pion-proton scattering in the investigated momentum range. The transversity isodoublet amplitudes at 1.98 and 2.07 GeV/ c are reconstructed. The obtained data, the isospin analysis and amplitude reconstruction results are compared with the current phase-shift analysis predictions.
No description provided.
None
Axis error includes +- 5/5 contribution (DUE TO ANALYZING POWER UNCERTAINTY).
Axis error includes +- 5/5 contribution (DUE TO ANALYZING POWER UNCERTAINTY).
Axis error includes +- 5/5 contribution (DUE TO ANALYZING POWER UNCERTAINTY).
None
No description provided.