Measurements of $W^+W^-\rightarrow e^\pm νμ^\mp ν$ production cross-sections are presented, providing a test of the predictions of perturbative quantum chromodynamics and the electroweak theory. The measurements are based on data from $pp$ collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015-2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. The number of events due to top-quark pair production, the largest background, is reduced by rejecting events containing jets with $b$-hadron decays. An improved methodology for estimating the remaining top-quark background enables a precise measurement of $W^+W^-$ cross-sections with no additional requirements on jets. The fiducial $W^+W^-$ cross-section is determined in a maximum-likelihood fit with an uncertainty of 3.1%. The measurement is extrapolated to the full phase space, resulting in a total $W^+W^-$ cross-section of $127\pm4$ pb. Differential cross-sections are measured as a function of twelve observables that comprehensively describe the kinematics of $W^+W^-$ events. The measurements are compared with state-of-the-art theory calculations and excellent agreement with predictions is observed. A charge asymmetry in the lepton rapidity is observed as a function of the dilepton invariant mass, in agreement with the Standard Model expectation. A CP-odd observable is measured to be consistent with no CP violation. Limits on Standard Model effective field theory Wilson coefficients in the Warsaw basis are obtained from the differential cross-sections.
Measured fiducial cross-section compared with theoretical predictions from MiNNLO+Pythia8, Geneva+Pythia8, Sherpa2.2.12, and MATRIX2.1. The predictions are based on the NNPDF3.0 (red squares) and NNPDF3.1 luxQED (blue dots) PDF sets. The nNNLO predictions include photon-induced contributions (always using NNPDF3.1 luxQED) and NLO QCD corrections to the gluon-gluon initial state. The $q\bar{q}\rightarrow WW$ predictions from MiNNLO, Geneva, and Sherpa2.2.12 are combined with a Sherpa2.2.2 prediction of gluon-induced production, scaled by an inclusive NLO K-factor of 1.7. Inner (outer) error bars on the theory predictions correspond to PDF (the combination of scale and PDF) uncertainties. The MATRIX nNNLO QCD $\otimes$ NLO EW prediction using NNPDF3.1 luxQED, the best available prediction of the integrated fiducial cross-section, is in good agreement with the measurement.
Fiducial differential cross-sections as a function of $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$. The measured cross-section values are shown as points with error bars giving the statistical uncertainty and solid bands indicating the size of the total uncertainty. The right-hand-side axis indicates the integrated cross-section of the rightmost bin. The results are compared to fixed-order nNNLO QCD + NLO EW predictions of Matrix 2.1, with the NNLO + PS predictions from Powheg MiNNLO + Pythia8 and Geneva + Pythia8, as well as Sherpa2.2.12 NLO + PS predictions. The last three predictions are combined with Sherpa 2.2.2 for the $gg$ initial state and Sherpa 2.2.12 for electroweak $WWjj$ production. These contributions are modelled at LO but a NLO QCD $k$-factor of 1.7 is applied for gluon induced production. Theoretical predictions are indicated as markers with vertical lines denoting PDF, scale and parton shower uncertainties. Markers are staggered for better visibility.
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$.
Measurements of the total and differential Higgs boson production cross-sections, via $WH$ and $ZH$ associated production using $H\rightarrow WW^\ast\rightarrow\ellν\ellν$ and $H\rightarrow WW^\ast\rightarrow\ellνjj$ decays, are presented. The analysis uses proton-proton events delivered by the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector between 2015 and 2018. The data correspond to an integrated luminosity of 140 fb$^{-1}$. The sum of the $WH$ and $ZH$ cross-sections times the $H\rightarrow WW^\ast$ branching fraction is measured to be $0.44^{+0.10}_{-0.09}$ (stat.) $^{+0.06}_{-0.05}$ (syst.) pb, in agreement with the Standard Model prediction. Higgs boson production is further characterised through measurements of the differential cross-section as a function of the transverse momentum of the vector boson and in the framework of Simplified Template Cross-Sections.
Post-fit distribution of $ANN_{Zdom}$ in the Z-dominated SR. The post-fit result is obtained from the combined 2-POI fit described in section 9.1 of the paper.
Best-fit values of the total $WH$, $ZH$, and $VH$ cross sections times the $H\rightarrow WW^{*}$ branching ratio.
Observed profile likelihood as a function of $\sigma\times\mathcal{B}_{H\rightarrow WW^{*}}$ normalised by the SM expectation for the $VH$ and $WH/ZH$ measurements from the combined 1- and 2-POI fits, respectively
The mass of the top quark is measured using top-antitop-quark pair events with high transverse momentum top quarks. The dataset, collected with the ATLAS detector in proton--proton collisions at $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider, corresponds to an integrated luminosity of 140 fb$^{-1}$. The analysis targets events in the lepton-plus-jets decay channel, with an electron or muon from a semi-leptonically decaying top quark and a hadronically decaying top quark that is sufficiently energetic to be reconstructed as a single large-radius jet. The mean of the invariant mass of the reconstructed large-radius jet provides the sensitivity to the top quark mass and is simultaneously fitted with two additional observables to reduce the impact of the systematic uncertainties. The top quark mass is measured to be $m_t = 172.95 \pm 0.53$ GeV, which is the most precise ATLAS measurement from a single channel.
Values and uncertainties for the parameters of interest in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data. The parameters of interest are the top quark mass, $m_t$, and the ratio of the measured cross-section to the Standard Model expectation of the $t\bar{t}$ cross-section, $\mu$.
Post-fit central values and uncertaintes for the nuisance parameters (including MC stat uncertainty terms) used in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.
Covariance matrix for the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.
Measurements of jet substructure are key to probing the energy frontier at colliders, and many of them use track-based observables which take advantage of the angular precision of tracking detectors. Theoretical calculations of track-based observables require `track functions', which characterize the transverse momentum fraction $r_q$ carried by charged hadrons from a fragmenting quark or gluon. This letter presents a direct measurement of $r_q$ distributions in dijet events from the 140 fb$^{-1}$ of proton--proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The data are corrected for detector effects using machine-learning methods. The scale evolution of the moments of the $r_q$ distribution is sensitive to non-linear renormalization group evolution equations of QCD, and is compared with analytic predictions. When incorporated into future theoretical calculations, these results will enable a precision program of theory-data comparison for track-based jet substructure observables.
$r_{q}$, Gluon jets, $240\text{GeV} \leq p_T < 300~\text{GeV}$, Gluon $\eta$, Fig 5
$r_{q}$, Gluon jets, $300~\text{GeV} \leq p_T < 400~\text{GeV}$, Gluon $\eta$, Fig 5
$r_{q}$, Gluon jets, $400~\text{GeV} \leq p_T < 500~\text{GeV}$, Gluon $\eta$, Fig 5
The production of $D^{\pm}$ and $D_{s}^{\pm}$ charmed mesons is measured using the $D^{\pm}/D_{s}^{\pm} \to ϕ(μμ)π^{\pm}$ decay channel with 137 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider during the years 2016-2018. The charmed mesons are reconstructed in the range of transverse momentum $12 < p_\mathrm{T} < 100$ GeV and pseudorapidity $|η| < 2.5$. The differential cross-sections are measured as a function of transverse momentum and pseudorapidity, and compared with next-to-leading-order QCD predictions. The predictions are found to be consistent with the measurements in the visible kinematic region within the large theoretical uncertainties.
The measured differential cross-sections and the predictions from GM-VFNS and FONLL calculations for the $D^\pm$ meson in bins of $|\eta|$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS and FONLL.
The measured differential cross-sections and the predictions from GM-VFNS and FONLL calculations for the $D^\pm$ meson in bins of $p_T$ for $|\eta| < 2.5$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS and FONLL.
The measured differential cross-sections and the predictions from the GM-VFNS calculation for the $D_s^\pm$ meson in bins of $|\eta|$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS.
A measurement of the ratio of the branching fractions, $R_{\tau/e} = B(W \to \tau \nu)/ B(W \to e \nu)$, is performed using a sample of $W$ bosons originating from top-quark decays to final states containing $\tau$-leptons or electrons. This measurement uses $pp$ collisions at $\sqrt{s}=13$ TeV, collected by the ATLAS experiment at the Large Hadron Collider during Run 2, corresponding to an integrated luminosity of 140 fb$^{-1}$. The $W \to \tau \nu_\tau$ (with $\tau \to e \nu_e \nu_\tau$) and $W \to e \nu_e$ decays are distinguished using the differences in the impact parameter distributions and transverse momentum spectra of the electrons. The measured ratio of branching fractions $R_{\tau/e} = 0.975 \pm 0.012 \textrm{(stat.)} \pm 0.020 \textrm{(syst.)}$, is consistent with the Standard Model assumption of lepton flavour universality in $W$-boson decays.
All the entries of this HEP data record are listed. Figure and Table numbers are the same as in the paper.
Number of events in the $\mu e$ channel from different sources, as estimated by the fit to the data, compared with the observed yield. Uncertainties include the statistical and systematic contribution. The uncertainty in the total expected number of events can be smaller than the uncertainties of the individual contributions because of correlations between them.
Number of events in the $e e$ channel from different sources, as estimated by the fit to the data, compared with the observed yield. Uncertainties include the statistical and systematic contribution. The uncertainty in the total expected number of events can be smaller than the uncertainties of the individual contributions because of correlations between them.
A search for decays of the Higgs boson into a $Z$ boson and a light resonance, with a mass of 0.5-3.5 GeV, is performed using the full 140 fb$^{-1}$ dataset of 13 TeV proton-proton collisions recorded by the ATLAS detector during Run 2 of the LHC. Leptonic decays of the $Z$ boson and hadronic decays of the light resonance are considered. The resonance can be interpreted as a $J/ψ$ or $η_c$ meson, an axion-like particle, or a light pseudoscalar in two-Higgs-doublet models. Due to its low mass, it would be produced with high boost and reconstructed as a single small-radius jet of hadrons. A neural network is used to correct the Monte Carlo simulation of the background in a data-driven way. Two additional neural networks are used to distinguish signal from background. A binned profile-likelihood fit is performed on the final-state invariant mass distribution. No significant excess of events relative to the expected background is observed, and upper limits at 95% confidence level are set on the Higgs boson's branching fraction to a $Z$ boson and a light resonance. The exclusion limit is ~10% for the lower masses, and increases for higher masses. Upper limits on the effective coupling $C^\text{eff}_{ZH}/Λ$ of an axion-like particle to a Higgs boson and $Z$ boson are also set at 95% confidence level, and range from 0.9 to 2 TeV$^{-1}$.
The angularity, for data, background (pre- and post-reweighting) and three $H\rightarrow Za$ signal hypotheses (for $a\rightarrow q\bar{q}/gg$ inclusively). Events are required to pass the complete event selection but not the classification NN requirement. The background normalization is set equal to that of the data for events passing the preselection and being in the $m_{\ell\ell j}$ 100-180 GeV region. The signal normalization assumes the SM Higgs boson inclusive production cross-section, $\mathcal{B}(H\to Za)=100\%$, and it is scaled up by a factor of 100. The error bars (hatched regions) represent the data (MC) sample's statistical uncertainty in the histograms and the ratio plots. Vertical arrows indicate data points that fall outside the displayed $y$-axis range.
The angularity, for data, background (pre- and post-reweighting) and three $H\rightarrow Za$ signal hypotheses (for $a\rightarrow q\bar{q}/gg$ inclusively). Events are required to pass the complete event selection but not the classification NN requirement. The background normalization is set equal to that of the data for events passing the preselection and being in the $m_{\ell\ell j}$ 100-180 GeV region. The signal normalization assumes the SM Higgs boson inclusive production cross-section, $\mathcal{B}(H\to Za)=100\%$, and it is scaled up by a factor of 100. The error bars (hatched regions) represent the data (MC) sample's statistical uncertainty in the histograms and the ratio plots. Vertical arrows indicate data points that fall outside the displayed $y$-axis range.
The modified energy correlation function, for data, background (pre- and post-reweighting) and three $H\rightarrow Za$ signal hypotheses (for $a\rightarrow q\bar{q}/gg$ inclusively). Events are required to pass the complete event selection but not the classification NN requirement. The background normalization is set equal to that of the data for events passing the preselection and being in the $m_{\ell\ell j}$ 100-180 GeV region. The signal normalization assumes the SM Higgs boson inclusive production cross-section, $\mathcal{B}(H\to Za)=100\%$, and it is scaled up by a factor of 100. The error bars (hatched regions) represent the data (MC) sample's statistical uncertainty in the histograms and the ratio plots. Vertical arrows indicate data points that fall outside the displayed $y$-axis range.
A measurement of the $B^{0}$ meson lifetime and related properties using $B^0 \to J/ψK^{*0}$ decays in data from 13 TeV proton-proton collisions with an integrated luminosity of 140 fb$^{-1}$ recorded by the ATLAS detector at the LHC is presented. The measured effective lifetime is $$ τ= 1.5053 \pm 0.0012 ~\mathrm{(stat.)} \pm 0.0035 ~\mathrm{(syst.)~ps}. $$ The average decay width extracted from the effective lifetime, using parameters from external sources, is $$ Γ_d = 0.6639 \pm 0.0005 ~\mathrm{(stat.)} \pm 0.0016 ~\mathrm{(syst.)}\pm 0.0038 ~\textrm{(ext.)} \textrm{ ps}^{-1}, $$ where the uncertainties are statistical, systematic and from external sources. The earlier ATLAS measurement of $Γ_s$ in the $B^0_s \to J/ψϕ$ decay was used to derive a value for the ratio of the average decay widths $Γ_d$ and $Γ_s$ for $B^{0}$ and $B_s^{0}$ mesons respectively, of $$ \frac{Γ_d }{Γ_s } = 0.9905 \pm 0.0022 ~\textrm{(stat.)} \pm 0.0036 ~\textrm{(syst.)} \pm 0.0057 ~\textrm{(ext.)}. $$ The measured lifetime, average decay width and decay width ratio are in agreement with theoretical predictions and with measurements by other experiments. This measurement provides the most precise result of the effective lifetime of the $B^{0}$ meson to date.
The measured effective lifetime for the $B^0 \rightarrow J/\psi\,K^{*0}$ decay.
The measured average decay width $\Gamma_{d}\,$ extracted from the average lifetime.
The measured ratio $\Gamma_{d} / \Gamma_{s}\,$ of the average decay widths.
The paper presents a search for supersymmetric particles produced in proton-proton collisions at $\sqrt{s}=$ 13 TeV and decaying into final states with missing transverse momentum and jets originating from charm quarks. The data were taken with the ATLAS detector at the Large Hadron Collider at CERN from 2015 to 2018 and correspond to an integrated luminosity of 139 fb$^{-1}$. No significant excess of events over the expected Standard Model background expectation is observed in optimized signal regions, and limits are set on the production cross-sections of the supersymmetric particles. Pair production of charm squarks or top squarks, each decaying into a charm quark and the lightest supersymmetric particle $\tilde{\chi}^0_1$, is excluded at 95% confidence level for squarks with masses up to 900 GeV for scenarios where the mass of $\tilde{\chi}^0_1$ is below 50 GeV. Additionally, the production of leptoquarks with masses up to 900 GeV is excluded for the scenario where up-type leptoquarks decay into a charm quark and a neutrino. Model-independent limits on cross-sections and event yields for processes beyond the Standard Model are also reported.
Summary of material in this HEPData record. <br/><br/> Truth Code snippets, SLHA files, Madgraph process cards and UFO files for the leptoquark models are available under "Additional Resources" (purple button on the left). <br/><br/> <b>Contours:</b> <ul> SUSY exclusion limits (best-expected SR combination) <ul> <a href="155678?version=1&table=Contour1">Expected</a> <a href="155678?version=1&table=Contour3">+1$\sigma$</a> <a href="155678?version=1&table=Contour2">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour4">Observed</a> <a href="155678?version=1&table=Contour5">+1$\sigma$</a> <a href="155678?version=1&table=Contour6">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (best-expected SR combination) as a function of $\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ <ul> <a href="155678?version=1&table=Contour7">Expected</a> <a href="155678?version=1&table=Contour9">+1$\sigma$</a> <a href="155678?version=1&table=Contour8">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour10">Observed</a> <a href="155678?version=1&table=Contour11">+1$\sigma$</a> <a href="155678?version=1&table=Contour12">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM1) <ul> <a href="155678?version=1&table=Contour15">Expected</a> <a href="155678?version=1&table=Contour14">+1$\sigma$</a> <a href="155678?version=1&table=Contour13">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour18">Observed</a> <a href="155678?version=1&table=Contour16">+1$\sigma$</a> <a href="155678?version=1&table=Contour17">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM2) <ul> <a href="155678?version=1&table=Contour21">Expected</a> <a href="155678?version=1&table=Contour20">+1$\sigma$</a> <a href="155678?version=1&table=Contour19">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour24">Observed</a> <a href="155678?version=1&table=Contour22">+1$\sigma$</a> <a href="155678?version=1&table=Contour23">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM3) <ul> <a href="155678?version=1&table=Contour27">Expected</a> <a href="155678?version=1&table=Contour26">+1$\sigma$</a> <a href="155678?version=1&table=Contour25">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour30">Observed</a> <a href="155678?version=1&table=Contour28">+1$\sigma$</a> <a href="155678?version=1&table=Contour29">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp1) <ul> <a href="155678?version=1&table=Contour33">Expected</a> <a href="155678?version=1&table=Contour32">+1$\sigma$</a> <a href="155678?version=1&table=Contour31">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour36">Observed</a> <a href="155678?version=1&table=Contour34">+1$\sigma$</a> <a href="155678?version=1&table=Contour35">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp2) <ul> <a href="155678?version=1&table=Contour39">Expected</a> <a href="155678?version=1&table=Contour38">+1$\sigma$</a> <a href="155678?version=1&table=Contour37">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour42">Observed</a> <a href="155678?version=1&table=Contour40">+1$\sigma$</a> <a href="155678?version=1&table=Contour41">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp3) <ul> <a href="155678?version=1&table=Contour45">Expected</a> <a href="155678?version=1&table=Contour44">+1$\sigma$</a> <a href="155678?version=1&table=Contour43">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour48">Observed</a> <a href="155678?version=1&table=Contour46">+1$\sigma$</a> <a href="155678?version=1&table=Contour47">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp-1c) <ul> <a href="155678?version=1&table=Contour50">Expected</a> <a href="155678?version=1&table=Contour49">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=1$ GeV) <ul> <a href="155678?version=1&table=Contour51">Expected</a> <a href="155678?version=1&table=Contour53">+1$\sigma$</a> <a href="155678?version=1&table=Contour52">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour54">Observed</a> <a href="155678?version=1&table=Contour55">+1$\sigma$</a> <a href="155678?version=1&table=Contour56">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=200$ GeV) <ul> <a href="155678?version=1&table=Contour57">Expected</a> <a href="155678?version=1&table=Contour59">+1$\sigma$</a> <a href="155678?version=1&table=Contour58">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour60">Observed</a> <a href="155678?version=1&table=Contour61">+1$\sigma$</a> <a href="155678?version=1&table=Contour62">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{21}$ exclusion limits <ul> <a href="155678?version=1&table=Contour65">Expected</a> <a href="155678?version=1&table=Contour64">+1$\sigma$</a> <a href="155678?version=1&table=Contour63">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour68">Observed</a> <a href="155678?version=1&table=Contour66">+1$\sigma$</a> <a href="155678?version=1&table=Contour67">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{22}$ exclusion limits <ul> <a href="155678?version=1&table=Contour71">Expected</a> <a href="155678?version=1&table=Contour70">+1$\sigma$</a> <a href="155678?version=1&table=Contour69">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour74">Observed</a> <a href="155678?version=1&table=Contour72">+1$\sigma$</a> <a href="155678?version=1&table=Contour73">-1$\sigma$</a> <br/> </ul> </ul> <b>Cross-section upper limits:</b> <ul> SUSY signals (best-expected SR combination): <a href="155678?version=1&table=Cross-sectionupperlimit1">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit2">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit3">Observed</a> <br/> $U(1)$ pair (min) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit6">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit5">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit4">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit7">Observed</a> <br/> $U(1)$ pair (YM) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit10">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit9">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit8">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit11">Observed</a> <br/> </ul> <b>Signal region distributions:</b> <ul> <a href="155678?version=1&table=SRdistribution2">$E_\mathrm{T}^\mathrm{miss}$ Sig. in SR-HM1</a> <br/> <a href="155678?version=1&table=SRdistribution3">$m_\mathrm{T}^\mathrm{min}(c)$ in SR-HM2</a> <br/> <a href="155678?version=1&table=SRdistribution4">$R_\mathrm{ISR}$ in SR-Comp1</a> <br/> <a href="155678?version=1&table=SRdistribution5">$R_\mathrm{ISR}$ in SR-Comp2</a> <br/> <a href="155678?version=1&table=SRdistribution6">$R_\mathrm{ISR}$ in SR-Comp3</a> <br/> <a href="155678?version=1&table=SRdistribution1">$R_\mathrm{ISR}$ in SR-Comp-1c</a> <br/> </ul> <b>Acceptances:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptance2">SR-HM1</a> <a href="155678?version=1&table=Acceptance3">SR-HM2</a> <a href="155678?version=1&table=Acceptance4">SR-HM3</a> <a href="155678?version=1&table=Acceptance5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptance6">SR-Comp1</a> <a href="155678?version=1&table=Acceptance7">SR-Comp2</a> <a href="155678?version=1&table=Acceptance8">SR-Comp3</a> <a href="155678?version=1&table=Acceptance1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptance9">SR-HM1</a> <a href="155678?version=1&table=Acceptance10">SR-HM2</a> <a href="155678?version=1&table=Acceptance11">SR-HM3</a> <a href="155678?version=1&table=Acceptance12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptance13">SR-HM1</a> <a href="155678?version=1&table=Acceptance14">SR-HM2</a> <a href="155678?version=1&table=Acceptance15">SR-HM3</a> <a href="155678?version=1&table=Acceptance16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptance17">SR-HM1</a> <a href="155678?version=1&table=Acceptance18">SR-HM2</a> <a href="155678?version=1&table=Acceptance19">SR-HM3</a> <a href="155678?version=1&table=Acceptance20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptance21">SR-HM1</a> <a href="155678?version=1&table=Acceptance22">SR-HM2</a> <a href="155678?version=1&table=Acceptance23">SR-HM3</a> <a href="155678?version=1&table=Acceptance24">SR-HM-Disc</a> <br/> </ul> <b>Efficiencies:</b> <ul> $U(1)$ pair (min): <a href="155678?version=1&table=Efficiency1">SR-HM1</a> <a href="155678?version=1&table=Efficiency2">SR-HM2</a> <a href="155678?version=1&table=Efficiency3">SR-HM3</a> <a href="155678?version=1&table=Efficiency4">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Efficiency5">SR-HM1</a> <a href="155678?version=1&table=Efficiency6">SR-HM2</a> <a href="155678?version=1&table=Efficiency7">SR-HM3</a> <a href="155678?version=1&table=Efficiency8">SR-HM-Disc</a> <br/> </ul> <b>Acceptance times efficiency:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptancetimesefficiency2">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency3">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency4">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptancetimesefficiency6">SR-Comp1</a> <a href="155678?version=1&table=Acceptancetimesefficiency7">SR-Comp2</a> <a href="155678?version=1&table=Acceptancetimesefficiency8">SR-Comp3</a> <a href="155678?version=1&table=Acceptancetimesefficiency1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptancetimesefficiency9">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency10">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency11">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptancetimesefficiency13">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency14">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency15">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptancetimesefficiency17">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency18">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency19">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptancetimesefficiency21">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency22">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency23">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency24">SR-HM-Disc</a> <br/> </ul> <b>Cutflow:</b> <ul> SUSY benchmarks: <a href="155678?version=1&table=Cutflow5">SR-HM1</a> <a href="155678?version=1&table=Cutflow6">SR-HM2</a> <a href="155678?version=1&table=Cutflow7">SR-HM3</a> <a href="155678?version=1&table=Cutflow8">SR-HM-Disc</a> <a href="155678?version=1&table=Cutflow2">SR-Comp1</a> <a href="155678?version=1&table=Cutflow3">SR-Comp2</a> <a href="155678?version=1&table=Cutflow4">SR-Comp3</a> <a href="155678?version=1&table=Cutflow1">SR-Comp-1c</a> <br/> LQ benchmarks: <a href="155678?version=1&table=Cutflow9">SR-HM1</a> <a href="155678?version=1&table=Cutflow10">SR-HM2</a> <a href="155678?version=1&table=Cutflow11">SR-HM3</a> <a href="155678?version=1&table=Cutflow12">SR-HM-Disc</a> <br/> </ul>
Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
A search is conducted for a new scalar boson $S$, with a mass distinct from that of the Higgs boson, decaying into four leptons ($\ell =$$e$, $\mu$) via an intermediate state containing two on-shell, promptly decaying new spin-1 bosons $Z_\text{d}$: $S \rightarrow Z_\text{d}Z_\text{d} \rightarrow 4\ell$, where the $Z_\text{d}$ boson has a mass between 15 and 300 GeV, and the $S$ boson has a mass between either 30 and 115 GeV or 130 and 800 GeV. The search uses proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider with an integrated luminosity of 139 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s}=13$ TeV. No significant excess above the Standard Model background expectation is observed. Upper limits at 95% confidence level are set on the production cross-section times branching ratio, $\sigma(gg \to S) \times \mathcal{B}(S\rightarrow Z_\text{d}Z_\text{d} \rightarrow 4\ell)$, as a function of the mass of both particles, $m_S$ and $m_{Z\text{d}}$.
Average dilepton mass distribution $\left\langle m_{\ell\ell}\right\rangle = \frac{1}{2}\left(m_{ab} + m_{cd}\right)$ in Signal Region 1.
Average dilepton mass distribution $\left\langle m_{\ell\ell}\right\rangle = \frac{1}{2}\left(m_{ab} + m_{cd}\right)$ in Signal Region 2.
Total invariant mass distribution $m_{4\ell}$ in Signal Region 1.