Inclusive and differential cross-sections for the production of top quarks in association with a photon are measured with proton$-$proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$. The data were collected by the ATLAS detector at the LHC during Run 2 between 2015 and 2018 at a centre-of-mass energy of 13 TeV. The measurements are performed in a fiducial volume defined at parton level. Events with exactly one photon, one electron and one muon of opposite sign, and at least two jets, of which at least one is $b$-tagged, are selected. The fiducial cross-section is measured to be $39.6\,^{+2.7}_{-2.3}\,\textrm{fb}$. Differential cross-sections as functions of several observables are compared with state-of-the-art Monte Carlo simulations and next-to-leading-order theoretical calculations. These include cross-sections as functions of photon kinematic variables, angular variables related to the photon and the leptons, and angular separations between the two leptons in the event. All measurements are in agreement with the predictions from the Standard Model.
The measured fiducial cross-section in the electron-muon channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.
The absolute differential cross-section measured in the fiducial phase-space as a function of the photon pT in the electron-muon channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute differential cross-section measured in the fiducial phase-space as a function of the photon $|\eta|$ in the electron-muon channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
Measurements of the Standard Model Higgs boson decaying into a $b\bar{b}$ pair and produced in association with a $W$ or $Z$ boson decaying into leptons, using proton-proton collision data collected between 2015 and 2018 by the ATLAS detector, are presented. The measurements use collisions produced by the Large Hadron Collider at a centre-of-mass energy of $\sqrt{s} = $13 TeV, corresponding to an integrated luminosity of 139 fb$^{-1}$. The production of a Higgs boson in association with a $W$ or $Z$ boson is established with observed (expected) significances of 4.0 (4.1) and 5.3 (5.1) standard deviations, respectively. Cross-sections of associated production of a Higgs boson decaying into bottom quark pairs with an electroweak gauge boson, $W$ or $Z$, decaying into leptons are measured as a function of the gauge boson transverse momentum in kinematic fiducial volumes. The cross-section measurements are all consistent with the Standard Model expectations, and the total uncertainties vary from 30% in the high gauge boson transverse momentum regions to 85% in the low regions. Limits are subsequently set on the parameters of an effective Lagrangian sensitive to modifications of the $WH$ and $ZH$ processes as well as the Higgs boson decay into $b\bar{b}$.
Best-fit values and uncertainties for $VH, V\rightarrow\mathrm{leptons}$ for the cross-section times the $H\rightarrow b\bar{b}$ branching fraction, in the reduced stage-1.2 simplififed template cross-sections (STXS) scheme. The SM predictions for each region is also shown. They are obtained from the samples of simulated events scaled to the inclusive cross-sections calculated at NNLO(QCD)+NLO(EW) accuracy for the $qq\rightarrow WH$ and $qq\rightarrow ZH$ processes, and at NLO+NLL accuracy for the $gg\rightarrow ZH$ process. The contributions to the total uncertainty in the measurements from statistical (Stat.) or systematic uncertainties in the signal modelling (Th. sig.), background modelling (Th. bkg.) and in experimental performance (Exp.) are given separately. All leptonic decays of the $V$ bosons (including those to $\tau$ leptons, $\ell = e, \mu, \tau$) are considered.
Observed correlations between the measured reduced stage-1.2 simplified template $VH, H \rightarrow b\bar{b}$ cross-sections (STXS), including both the statistical and systematic uncertainties. All leptonic decays of the $V$ bosons (including those to $\tau$ leptons, $\ell = e, \mu, \tau$) are considered.
Linear combination of Wilson coefficients corresponding to SMEFT operators in the Warsaw basis for which this analysis provides orthogonal constraints (eigenvectors). Eigenvalues are shown for each eigenvector, which provides a measure of the experimental sensitivity to that linear combination. The modifications to the $qq\rightarrow ZH$ and $qq\rightarrow WH$ processes due to SMEFT operators are computed at LO, and changes to the $gg\rightarrow ZH$ process are neglected.
We present measurements of the near-side of triggered di-hadron correlations using neutral strange baryons ($\Lambda$, $\bar{\Lambda}$) and mesons ($K^0_S$) at intermediate transverse momentum (3 $<$ $p_T$ $<$ 6 GeV/$c$) to look for possible flavor and baryon/meson dependence. This study is performed in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV measured by the STAR experiment at RHIC. The near-side di-hadron correlation contains two structures, a peak which is narrow in azimuth and pseudorapidity consistent with correlations due to jet fragmentation, and a correlation in azimuth which is broad in pseudorapidity. The particle composition of the jet-like correlation is determined using identified associated particles. The dependence of the conditional yield of the jet-like correlation on the trigger particle momentum, associated particle momentum, and centrality for correlations with unidentified trigger particles are presented. The neutral strange particle composition in jet-like correlations with unidentified charged particle triggers is not well described by PYTHIA. However, the yield of unidentified particles in jet-like correlations with neutral strange particle triggers is described reasonably well by the same model.
Corrected 2D $K_S^0$ correlation function for 3 < $p_T^{trigger}$ < 6 GeV/$c$ and 1.5 GeV/$c$ < $p_T^{associated}$ < $p_T^{trigger}$ for 0-20% Cu+Cu. The data have been reflected about $\Delta\eta$ = 0 and $\Delta\phi$ = 0.
Corrected correlation functions $\frac{dN_{J}}{d\Delta\eta}$ in $\mid$$\Delta\eta$$\mid<$ 0.78 for 3 < $p_T^{trigger}$ < 6 GeV/$c$ and 1.5 GeV/$c$ < $p_T^{associated}$ < $p_T^{trigger}$ for (a) $\Lambda$-h and (b) $K_S^0$-h for minimum bias $d$+Au, 0-20% Cu+Cu, and 40-80% Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV after background subtraction. The data have been reflected about $\Delta\eta$ = 0.
$\Lambda$/$K^0_S$ ratio measured in the jet-like correlation in 0-60% Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV for 3 < $p_T^{trigger}$ < 6 GeV/$c$ and \assocrange{2.0}{3.0} along with this ratio obtained from inclusive $p_T$ spectra in \pp collisions.
We report on the measurement of $\rm{J}/\psi$ production in the dielectron channel at mid-rapidity (|y|<1) in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider. The transverse momentum $p_{T}$ spectra in p+p for $p_{T}$ < 4 GeV/c and d+Au collisions for $p_{T}$ < 3 GeV/c are presented. These measurements extend the STAR coverage for $\rm{J}/\psi$ production in p+p collisions to low $p_{T}$. The $
The mean square of $p_T$.
Nuclear absorption cross section.
The nuclear modicifation factor vs. $p_T$ for $J\psi$ with |y| < 1 in 0-100 percent central d+Au collisions.
One of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force since acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered and their masses measured, we have no direct knowledge of the nuclear force between antinucleons. Here, we study antiproton pair correlations among data taken by the STAR experiment at the Relativistic Heavy Ion Collider and show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: namely, the scattering length (f0) and effective range (d0). As direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, our result provides a fundamental ingredient for understanding the structure of more complex antinuclei and their properties.
Correlation function for proton-proton pairs (top), antiproton-antiproton pairs (middle), and the ratio of the former to the latter (bottom).
Measurements of the singlet s-wave scattering length (f0) and the effective range (d0) from this and other experiments.
A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $K\pi$, $p\pi$, and $Kp$ fluctuations as measured by the STAR experiment in central 0-5\% Au+Au collisions from center-of-mass collision energies $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $\rm \nu_{dyn}$ was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the $K\pi$, $p\pi$, and $Kp$ pairs. The energy dependences of these fluctuations from central 0-5\% Au+Au collisions all demonstrate a smooth evolution with collision energy.
$p\pi$, Kp, and $K\pi$ fluctuations as a function of collision energy, expressed as $v_{dyn,p\pi}$, $v_{dyn,Kp}$, and $v_{dyn,K\pi}$ respectively. Shown are data from central (0-5%) Au+Au collisions at energies from $\sqrt{s_{\rm NN}}$ = 7.7 to 200 GeV from the STAR experiment.
Event-by-event fluctuations of the ratio of inclusive charged to photon multiplicities at forward rapidity in Au+Au collision at $\sqrt{s_{NN}}$=200 GeV have been studied. Dominant contribution to such fluctuations is expected to come from correlated production of charged and neutral pions. We search for evidences of dynamical fluctuations of different physical origins. Observables constructed out of moments of multiplicities are used as measures of fluctuations. Mixed events and model calculations are used as baselines. Results are compared to the dynamical net-charge fluctuations measured in the same acceptance. A non-zero statistically significant signal of dynamical fluctuations is observed in excess to the model prediction when charged particles and photons are measured in the same acceptance. We find that, unlike dynamical net-charge fluctuation, charge-neutral fluctuation is not dominated by correlation due to particle decay. Results are compared to the expectations based on the generic production mechanism of pions due to isospin symmetry, for which no significant (<1%) deviation is observed.
Multiplicity distributions of raw charged particles and photons.
The $v_{dyn}$ and the three terms of $v_{dyn}$ vs $\sqrt{\langle N_{ch}\rangle \langle N_{\gamma}\rangle }$ for real events. $\omega_{ch}^{real}$ is plotted.
The $v_{dyn}$ and the three terms of $v_{dyn}$ vs $\sqrt{\langle N_{ch}\rangle \langle N_{\gamma}\rangle }$ for mixed events. $\omega_{ch}^{mixed}$ is plotted.
We present $\Lambda\Lambda$ correlation measurements in heavy-ion collisions for Au+Au collisions at $\sqrt{s_{NN}}= 200$ GeV using the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). The Lednick\'{y}-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the $\Lambda\Lambda$ correlation function and interaction parameters for di-hyperon searches are discussed.
The invariant mass distribution for $\Lambda$ and $\bar{\Lambda}$ produced in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, for 0-80% centrality. The $\Lambda$ and $\bar{\Lambda}$ candidates lying in the mass range 1.112 to 1.120 GeV/c^2 were selected for the correlation measurement.
The $\Lambda\Lambda$ and $\bar{\Lambda}\bar{\Lambda}$ correlation function in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, for 0-80% centrality.
The combined $\Lambda\Lambda$ and $\bar{\Lambda}\bar{\Lambda}$ correlation function for 0-80% centrality Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.
The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 62.4 GeV.
The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 39 GeV.
The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 27 GeV.
Two-particle azimuthal ($\Delta\phi$) and pseudorapidity ($\Delta\eta$) correlations using a trigger particle with large transverse momentum ($p_T$) in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both $\Delta\phi$ and $\Delta\eta$, and the ridge, narrow in $\Delta\phi$ but broad in $\Delta\eta$. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated $p_T$. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV, is also found in Cu+Cu collisions and in collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV, but is found to be substantially smaller at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV than at $\sqrt{s_{{NN}}}$ = 200 GeV for the same average number of participants ($ \langle N_{\mathrm{part}}\rangle$). Measurements of the ridge are compared to models.
Parameterizations of the transverse momentum dependence of the reconstruction efficiency of charged particles in the TPC in various collision systems, energies and centrality bins for the track selection cuts used in this analysis.
The raw correlation in $\Delta\eta$ for di-hadron correlations for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-12% central \Au collisions for $|\Delta\phi|<$ 0.78 before and after the track merging correction is applied. The data have been reflected about $\Delta\eta$=0.
Sample correlations in $\Delta\eta$ ($|\Delta\phi|<$ 0.78) for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-80% Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-95% $d$+Au at $\sqrt{s_{NN}}$ = 200 GeV, 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV, 40-80% Au+Au at $\sqrt{s_{NN}}$ = 200 GeV, and 0-12% central Au+Au at $\sqrt{s_{NN}}$ = 200 GeV. The data are averaged between positive and negative $\Delta\eta$. 5% systematic uncertainty due to track reconstruction efficiency not listed below.