We report systematic measurements of bulk properties of the system created in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).The transverse momentum spectra of $\pi^{\pm}$, $K^{\pm}$ and $p(\bar{p})$ are studied at mid-rapidity ($|y| < 0.1$) for nine centrality intervals. The centrality, transverse momentum ($p_T$),and pseudorapidity ($\eta$) dependence of inclusive charged particle elliptic flow ($v_2$), and rapidity-odd charged particles directed flow ($v_{1}$) results near mid-rapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. The results at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5 GeV energy fills the gap in $\mu_B$, which is of the order of 100 MeV,between $\sqrt{s_{\mathrm{NN}}}$ =11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general.
The $p_{T}$ spectra of proton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicated in the legend
The $p_{T}$ spectra of antiproton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend
The $p_{T}$ spectra of $\pi^{+}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend
We report on the measurement of $\rm{J}/\psi$ production in the dielectron channel at mid-rapidity (|y|<1) in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider. The transverse momentum $p_{T}$ spectra in p+p for $p_{T}$ < 4 GeV/c and d+Au collisions for $p_{T}$ < 3 GeV/c are presented. These measurements extend the STAR coverage for $\rm{J}/\psi$ production in p+p collisions to low $p_{T}$. The $
The mean square of $p_T$.
Nuclear absorption cross section.
The nuclear modicifation factor vs. $p_T$ for $J\psi$ with |y| < 1 in 0-100 percent central d+Au collisions.
Dihadron correlations are analyzed in $\sqrt{s_{_{\rm NN}}} = 200$ GeV $d$+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.
The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the near (|$\Delta\phi$| < $\pi$/3). Shown is the low FTPC-Au activity data. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.
The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the away side (|$\Delta\phi$ - $\pi$| < $\pi$/3. Shown is the high FTPC-Au activity data. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.
The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the near (|$\Delta\phi$| < $\pi$/3) side. Shown is the high-activity data after subtracting the unscaled. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.
We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.
Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 8.4 < $p_T$ < 9.9 GeV/c.
Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 26.8 < $p_T$ < 31.6 GeV/c.
Inclusive jet $A_{LL}$ vs. parton jet $p_T$ for |eta|<0.5.
We report $J/\psi$ spectra for transverse momenta $p_T$> 5 GeV/$c$ at mid-rapidity in p+p and Au+Au collisions at sqrt(s_{NN}) = 200 GeV.The inclusive $J/\psi$ spectrum and the extracted $B$-hadron feed-down are compared to models incorporating different production mechanisms. We observe significant suppression of the $J/\psi$ yields for $p_T$> 5 GeV/$c$ in 0-30% Au+Au collisions relative to the p+p yield scaled by the number of binary nucleon-nucleon collisions in Au+Au collisions. In 30-60% collisions, no such suppression is observed.The level of suppression is consistently less than that of high-$p_T$ $\pi^{\pm}$ and low-$p_T$ $J/\psi$.
(Color online.) The invariant $J/\psi$ cross section versus $p_{T}$ in p+p collisions at $\sqrt{s}$ = 200 GeV. The vertical bars and boxes depict the statistical and systematic uncertainties, respectively. Also shown are results published by STAR [15] and PHENIX [20]. The curves show theoretical calculations described in the text.
(Color online.) The fraction of $B \rightarrow J/\psi$ over the inclusive $J/\psi$ yield in $p+p$ collisions. The FONLL+CEM model calculation is also shown.
$J/\psi$ $p_{T}$ distributions in Au+Au collisions with different centralities at $\sqrt{s_{NN}}$ = 200 GeV. For clarity, the data and curves have been scaled as indicated in the legends. The PHENIX results are reported in [6]. The curves are model fits described in the text.
We report measurements of the charge-separated $W^{+(-)} \to e^{+(-)} + \nu_e(\bar{\nu}_e)$ and $Z/\gamma^* \to e^+e^-$ production cross sections at mid-rapidity in proton-proton collisions at $\sqrt{s}$ = 500 GeV. These results are based on 13.2 pb$^{-1}$ of data recorded in 2009 by the STAR detector at RHIC. Production cross sections for W bosons that decay via the $e \nu$ channel were measured to be $\sigma(pp \to W^+ X) \cdot BR(W^+ \to e^+ \nu_e)$ = 117.3 \pm 5.9(stat) \pm 6.2(syst) \pm 15.2(lumi) pb, and $\sigma(pp \to W^- X) \cdot BR(W^- \to e^- \bar{\nu}_e)$ = 43.3 \pm 4.6(stat) \pm 3.4(syst) \pm 5.6(lumi) pb. For $Z/\gamma^*$ production, $\sigma(pp \to Z/\gamma^* X) \cdot BR(Z/\gamma^* \to e^+ e^-)$ = 7.7 \pm 2.1(stat) $^{+0.5}_{-0.9}$(syst) \pm 1.0(lumi) pb for di-lepton invariant masses $m_{e^+e^-}$ between 70 and 110 GeV/$c^2$. First measurements of the W cross section ratio, $\sigma(pp \to W^+ X) / \sigma(pp \to W^- X)$, at $\sqrt{s}$ = 500 GeV are also reported. Theoretical predictions, calculated using recent parton distribution functions, are found to agree with the measured cross sections.
(Color online) Trigger rate as a function of vernier scan beam displacement in the x and y directions. The transverse beam widths ($\sigma_{x}$ and $\sigma_{y}$) and maximum trigger rate ($R^{max}_{ver}$) were extracted from the fit, which is superimposed.
(Color online) Trigger rate as a function of vernier scan beam displacement in the x and y directions. The transverse beam widths ($\sigma_{x}$ and $\sigma_{y}$) and maximum trigger rate ($R^{max}_{ver}$) were extracted from the fit, which is superimposed.
(Color online) Distributions of $E^{e}_{T}$ for W candidate events after sequentially applying the selection criteria de- scribed in Secs. IV A and IV B.
Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Measurements of charged particle distributions, sensitive to the underlying event, have been performed with the ATLAS detector at the LHC. The measurements are based on data collected using a minimum-bias trigger to select proton-proton collisions at center-of-mass energies of 900 GeV and 7 TeV. The 'underlying event' is defined as those aspects of a hadronic interaction attributed not to the hard scattering process, but rather to the accompanying interactions of the rest of the proton. Three regions are defined in azimuthal angle with respect to the highest-pt charged particle in the event, such that the region transverse to the dominant momentum-flow is most sensitive to the underlying event. In each of these regions, distributions of the charged particle multiplicity, pt density, and average pt are measured. The data show a higher underlying event activity than that predicted by Monte Carlo models tuned to pre-LHC data.
Particle Number Density versus Lead Particle PT at centre-of-mass energy 900 GeV.
Particle Number Density versus Lead Particle PT at centre-of-mass energy 7000 GeV.
Particle PT Density versus Lead Particle PT at centre-of-mass energy 900 GeV.
The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|<2.5 and pT>500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.
Average value of charged particle multiplicity per event and unit of pseudorapidity in the pseudorapidity range from -0.2 to 0.2.
Charged particle multiplicity as a function of pseudorapidity.
Charged particle multiplicity as a function of transverse momentum.
We present a measurement of pi^+pi^-pi^+pi^- photonuclear production in ultra-peripheral Au-Au collisions at sqrt(s_{NN}) = 200 GeV from the STAR experiment. The pi^+pi^-pi^+pi^- final states are observed at low transverse momentum and are accompanied by mutual nuclear excitation of the beam particles. The strong enhancement of the production cross section at low transverse momentum is consistent with coherent photoproduction. The pi^+pi^-pi^+pi^- invariant mass spectrum of the coherent events exhibits a broad peak around 1540 pm 40 MeV/c^2 with a width of 570 pm 60 MeV/c^2, in agreement with the photoproduction data for the rho^0(1700). We do not observe a corresponding peak in the pi^+pi^- final state and measure an upper limit for the ratio of the branching fractions of the rho^0(1700) to pi^+pi^- and pi^+pi^-pi^+pi^- of 2.5 % at 90 % confidence level. The ratio of rho^0(1700) and rho^0(770) coherent production cross sections is measured to be 13.4 pm 0.8 (stat.) pm 4.4 (syst.) %.
Distribution of the $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ transverse momentum $p_{T} = |\sum_{i=1}^{4}\overrightarrow{p}_{T,i}|$: The filled circles are the measured points with the statistical errors. The hatched filled histogram shows the expected distribution from simulation of coherent photoproduction (cf. section III). The strong enhancement at low transverse momenta is due to coherently produced $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$. This unique signature is used in the event selection which requires $p_{T}$ < 150 MeV/c (arrow). The remaining background is estimated from +2 or −2 charged four-prong combinations, by normalizing (factor = 1.186 $\pm$ 0.054) their $p_{T}$ distribution (gray filled histogram) to that of the neutral four-prongs in the region of $p_{T}$ > 250 MeV/c (vertical line) yielding the unfilled histogram (see section IV).
Invariant Mass distribution of two-pion subsystems: The filled circles show the measured $\pi^{+}\pi^{-}$ invariant mass spectrum for the selected four-prong sample (four entries per event) with statistical errors. The open circles represent the mass spectrum of the like-sign pion pairs (two entries per event). The unlike-sign mass distribution exhibits an enhancement with respect to the like-sign pairs in the $\rho^{0}$(770) region. The solid line histograms show the prediction from simulation assuming the relative S-wave decay $\rho`\rightarrow\rho^{0}$(770) $f_{0}$(600).
Invariant Mass distribution of two-pion subsystems: The open circles show the measured invariant mass spectrum of the lightest $\pi^{+}\pi^{-}$ pair in the event with the bars indicating the statistical errors. The filled circles represent the invariant mass distribution of the $\pi^{+}\pi^{-}$ that is recoiling against the lightest pair. The spectrum exhibits a clear peak in the $\rho^{0}$(770) region. The solid line histograms show the prediction from simulation assuming the relative S-wave decay $\rho`\rightarrow\rho^{0}$(770) $f_{0}$(600).