Observation of multihadronic events in e+ e- collisions at the energy of 1.18-1.34 gev

Kurdadze, L.M. ; Onuchin, A.P. ; Serednyakov, S.I. ; et al.
Phys.Lett.B 42 (1972) 515-518, 1972.
Inspire Record 84975 DOI 10.17182/hepdata.28190

Using the electron-positron storage ring VEPP-2 multipionic events have been observed at a total energy of 1.18–1.34 GeV. The experimental cross-section appears to be considerably larger than calculated within the framework of the vector dominance model for the processes e + e − → ϱπ , ϱϵ , ωπ , A 1 π . The data on the total cross-section obtained in the framework of the statistical model with 4 pions are presented.

1 data table

DATA VALUES MEASURED OFF GRAPH IN JOURNAL. VALUES OF R CALCULATED FROM TOTAL MULTIHADRONIC CROSS SECTION.


Measurement of the electron-positron annihilation cross-section into pi+ pi-, k+ k- pairs at the total energy 1.18-1.34 gev

Balakin, V.E. ; Budker, G.I. ; Kurdadze, L.M. ; et al.
Phys.Lett.B 41 (1972) 205-208, 1972.
Inspire Record 75634 DOI 10.17182/hepdata.28229

Using the electron-position storage ring VEPP-2 an experiment has been performed in which the cross-sections of the reactions e + e − → π + π − and e + e − →K + K − were measured in the energy regi on 1.18–1.34 GeV. The experimental values of the formfactors lie higher than curves extrapolated from the ϱ- and ϕ-meson region.

2 data tables

No description provided.

No description provided.


Search for magnetic monopoles at the 70 gev iphe proton synchrotron

Gurevich, I.I. ; Khakimov, S.K. ; Martemyanov, V.P. ; et al.
Phys.Lett.B 38 (1972) 549-550, 1972.
Inspire Record 75823 DOI 10.17182/hepdata.28325

The result of a search for magnetic charged particles at 70 GeV IPHE proton synchrotron is presented. Using the ferromagnetic trap method the upper limit of the magnetic monopole production cross-section in proton-nucleon collisions was found to be α (95%) ⩾ × 10 −43 cm 2 .

1 data table

No description provided.


Measurements of pi- p ---> pi0 n reaction cross-section in the momentum range up to 50 gev/c

Bolotov, V.N. ; Devishev, M.I. ; Devisheva, M.N. ; et al.
Phys.Lett.B 38 (1972) 120-122, 1972.
Inspire Record 75878 DOI 10.17182/hepdata.28338

Cross-section data are presented for pion proton charge-exchange scattering in the momentum range 20 to 50 GeV/ c . The experiments were performed at 70 GeV IHEP accelerator.

1 data table

No description provided.


Energy dependence of pi-, K- and anti-p total cross-sections on protons in the momentum range up to 65-GeV/c

Denisov, S.P. ; Dmitrevsky, Yu.P. ; Donskov, S.V. ; et al.
Phys.Lett.B 36 (1971) 528-532, 1971.
Inspire Record 67295 DOI 10.17182/hepdata.28394

π − p , K − p and p p total cross-sections are measured at momenta up to 65GeV/ c with statistical accuracy 0.3 ÷ 0.6% and systematical (scale) error ≈ 0.4%.

3 data tables

No description provided.

No description provided.

No description provided.


Y*(1385) production in anti-p reactions at 5.7 gev/c

Atherton, H.W. ; Celnikier, L.M. ; Clayton, M.J. ; et al.
Nucl.Phys.B 29 (1971) 477-503, 1971.
Inspire Record 68633 DOI 10.17182/hepdata.33412

From a bubble chamber exposure in an antiproton beam at 5.7 GeV/ c yielding 13 events/μb, the final states p ̄ p → Y 1 ∗+ (1385)Λ, Y 1 ∗+ (1385)Σ + , Y 1 ∗+ (1385) Y 1 ∗+ (1385) have been isolated. We have measured the total cross section, d σ /d t , and the complete density matrix of the Y ∗ for these processes. Upper limits have been set to the forbidden reactions p ̄ p → Y 1 ∗− (1385)Σ − , Y 1 ∗− (1385) Y 1 ∗− (1385) .

35 data tables

VALUE OF PRODUCTION CROSS-SECTION IN TEXT HALVED AS INCLUDED CHARGE CONJUGATE REACTION.

VALUE OF PRODUCTION CROSS-SECTION IN TEXT HALVED AS INCLUDED CHARGE CONJUGATE REACTION.

No description provided.

More…

General characteristics of the annihilation reaction p p ---> 3pi+ 3pi- (pi0) at 3.6 gev/c

Atherton, H.W. ; Blair, W.M.R. ; Celnikier, L.M. ; et al.
Nucl.Phys.B 18 (1970) 221-245, 1970.
Inspire Record 62649 DOI 10.17182/hepdata.34415

In the reaction p p → 3π + 3π − 2227 events, and in the reaction p p → 3π + 3π − π 0 6578 events have been analyzed. The general characteristics of the reactions, such as total cross sections, angular and momentum distributions, the production of ϱ, f, ω and η mesons, and angular correlations are presented.

4 data tables

No description provided.

THETA being the angle between PI+ and P (or PI- and PBAR) in CMS.

THETA being the angle between PI+ and P (or PI- and PBAR) in CMS.

More…

Two-body hyperon production by 5.7 gev/c anitprotons on protons

Atherton, H.W. ; Celnikier, L.M. ; French, B. ; et al.
Phys.Lett.B 30 (1969) 494-497, 1969.
Inspire Record 56634 DOI 10.17182/hepdata.28892

Total and differential cross sections are presented on the reactions: p ̄ p → Λ Λ, ΛΣ 0 + c.c. , Σ + Σ + at an incident momentum of 5.7 GeV/ c , from 200 000 photographs (13 events/ Σ b) of the CERN 2 metre hydrogen bubble chamber. The “forbidden” reaction p ̄ p → Σ − Σ − is also observed and its cross section is 1.3 ± 0.4 μ b. Polarization and correlation of polarizations are presented for the reaction p ̄ p → Λ Λ .

1 data table

No description provided.


Reactions pi-minus + p ---> pi-minus + p and pi-minus + p ---> pi-minus + pi-neutral + p at 1.7 gev/c

Allen, D.D. ; Fisher, G.P. ; Godden, G. ; et al.
Nuovo Cim.A 58 (1968) 701-727, 1968.
Inspire Record 53770 DOI 10.17182/hepdata.37563

The reactions π−p→π−p and π−p→π−π0p for 1.7 GeV/c incident π− have been studied, in 3094 and 2244 interactions respectively, identified from 10 106 two-prong events measured in film exposed at the BNL 20 in. hydrogen bubble chamber. The differential elastic-scattering cross-section is found to show a first and second diffraction peak and a first diffraction minimum with indications of a second minimum and onset of a third maximum. The experimental curve has been fitted by a black-dise optical-model formula with radius (0.80±0.03) fm and by a differential cross-section computed from the Dirac equation depending on two ranges, 0.7 fm attractive imaginary and 0.4 fm repulsive. The dominant mode (∼40%) of the π−π0p production is through the two-body channel, π−p→ϱ−p. We find the following cross-sections: σ(π−p→π−p mb, σ(π−p→π−p mb. The differential rhomeson production cross-section shows a diffraction peak having a dependence (dσ/dt)(π−p→ϱ−p)=[(2.5±0.2) exp [(−5.3±0.5)t]] mb/(GeV/c)2, wheret is the squared four0momentum transfer between incoming and outgoing proton in (GeV/c)2, and a second diffraction maximum. It has been fitted by an optical-model formula for a bright ring of radius 0.80 fm and ring thickness 0.25 fm. The cross-section for σ(π−p→π−p was found to be (0.36±0.04) mb. From the inelastic data the Chew-Low dipion scattering cross-section has been computed, using various form factors. A form factor of unity is found to be acceptable.

1 data table

No description provided.


Scattering of 151- and 188-Mev Positive Pions by Protons

Homa, George ; Goldhaber, Gerson ; Lederman, Leon M. ;
Phys.Rev. 93 (1954) 554-561, 1954.
Inspire Record 944934 DOI 10.17182/hepdata.26417

A beam of ∼200-Mev π+ mesons was defined inside the vacuum chamber of the Nevis Cyclotron. Nuclear emulsions were exposed to a flux of about 104 mesons/cm2. The plates were scanned for pion-hydrogen scatterings and 103 such events were observed in two interaction energies, 151±7 Mev and 188±8 Mev. We obtain total cross sections of 152±31 and 159±34×10−27 cm2, respectively. The data suggest that the angular distribution changes from backwards peaked to almost symmetric over this energy interval. Our observations are not in agreement with the hypothesis of a P32-wave resonance in this energy region. The best fit to the combined results includes a D-wave contribution of -5.4°, although satisfactory agreement may be obtained with only S and P waves.

2 data tables

Axis error includes +- 0.0/0.0 contribution (?////Due to flux, scanning efficiency, doubtful and background events, and thesmall uncertainty in the density of hydrogen in the emulsion).

Axis error includes +- 0.0/0.0 contribution (?////Due to flux, scanning efficiency, doubtful and background events, and thesmall uncertainty in the density of hydrogen in the emulsion).