We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 < m_{3\pi} < 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 < t' < 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.
Real and imaginary parts of the normalized transition amplitudes $\mathcal{T}_a$ of the 14 selected partial waves in the 1100 $(m_{3\pi}, t')$ cells (see Eq. (12) in the paper). The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the transition amplitudes in the column headers. The $m_{3\pi}$ values that are given in the first column correspond to the bin centers. Each of the 100 $m_{3\pi}$ bins is 20 MeV/$c^2$ wide. Since the 11 $t'$ bins are non-equidistant, the lower and upper bounds of each $t'$ bin are given in the column headers. The transition amplitudes define the spin-density matrix elements $\varrho_{ab}$ for waves $a$ and $b$ according to Eq. (18). The spin-density matrix enters the resonance-model fit via Eqs. (33) and (34). The transition amplitudes are normalized via Eqs. (9), (16), and (17) such that the partial-wave intensities $\varrho_{aa} = |\mathcal{T}_a|^2$ are given in units of acceptance-corrected number of events. The relative phase $\Delta\phi_{ab}$ between two waves $a$ and $b$ is given by $\arg(\varrho_{ab}) = \arg(\mathcal{T}_a) - \arg(\mathcal{T}_b)$. Note that only relative phases are well-defined. The phase of the $1^{++}0^+ \rho(770) \pi S$ wave was set to $0^\circ$ so that the corresponding transition amplitudes are real-valued. In the PWA model, some waves are excluded in the region of low $m_{3\pi}$ (see paper and [Phys. Rev. D 95, 032004 (2017)] for a detailed description of the PWA model). For these waves, the transition amplitudes are set to zero. The tables with the covariance matrices of the transition amplitudes for all 1100 $(m_{3\pi}, t')$ cells can be downloaded via the 'Additional Resources' for this table.
Decay phase-space volume $I_{aa}$ for the 14 selected partial waves as a function of $m_{3\pi}$, normalized such that $I_{aa}(m_{3\pi} = 2.5~\text{GeV}/c^2) = 1$. The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the decay phase-space volume in the column headers. The labels are identical to the ones used in the column headers of the table of the transition amplitudes. $I_{aa}$ is calculated using Monte Carlo integration techniques for fixed $m_{3\pi}$ values, which are given in the first column, in the range from 0.5 to 2.5 GeV/$c^2$ in steps of 10 MeV/$c^2$. The statistical uncertainties given for $I_{aa}$ are due to the finite number of Monte Carlo events. $I_{aa}(m_{3\pi})$ is defined in Eq. (6) in the paper and appears in the resonance model in Eqs. (19) and (20).
None
No description provided.
No description provided.
No description provided.
The results of a measurement of recoil proton polarization for π−p → π−p at 300 MeV are given, and a phase shift analysis is made with the help of other data.
No description provided.
This investigation was performed with a 24-liter propane bubble chamber [i] and is a continu- ation of our previous work on the production of strange particles by 7-8-BeV 1r- mesons on hydrogen and carbon. [ 2 - 5 ] The properties of 1r 0 mesons inferred from the y quanta accom- panying A and K 0 production are given, and are compared with the properties of 1r+ and 7r- mesons emitted in A and K 0 production processes. The possibility of a resonance with radi- ative decay is noted.
No description provided.
No description provided.
THE study of elastic scattering at high energies in the region of the diffraction maximum has gained in interest recently in connection with the verifica- tion of the asymptotic expressions obtained by cal- culating the Regge-pole trajectories. We have in- vestigated the elastic scattering of 3. 5- Be VIc 7r- mesons by protons. The measurements were made with the aid of a liquid-hydrogen bubble chamber 25 em in diameter, placed in a 14 kOe magnetic field.
No description provided.
DATA READ FROM GRAPH BY SRS.
No description provided.
None
No description provided.
No description provided.
No description provided.
We report a new measurement of the differential cross section for π−p→π0n from pπ=649 to 752 MeV/c, which is around the opening of the η channel (685 MeV/c). Our data support the main features of the π−p charge-exchange differential cross sections generated by the SAID πN partial-wave analysis. The opening of the η channel has a clear effect on the shape of the excitation function for dσ(π−p→π0n), which is most noticeable in the backward direction.
Differential cross section for incident pion momentum 649, 654 and 657 MeV.
Differential cross section for incident pion momentum 661, 666 and 669 MeV.
Differential cross section for incident pion momentum 673, 678 and 681 MeV.
We report a new measurement of the π−p→3π0n total cross section from threshold to pπ=0.75GeV/c. The cross section near the N(1535)12− resonance is only a few μb after subtracting the large η→3π0 background associated with π−p→ηn. A simple analysis of our data results in the estimated branching fraction B[S11→πN(1440)12+]=(8±2)%. This is the first such estimate obtained with a three-pion production reaction.
Total cross section from threshold to 750 MeV. Only statistical errors are given in the table.
We review earlier results, and add new evidence, on the existence of a narrow ${\mathrm{p}}\overline{\mathrm{p}}$ state at a mass of 2.02 GeV $/c^
Cross section times branching ratio. Statistical errors only.
Cross section times branching ratio. Statistical errors only.
The πpi-system produced in the charge exchange π−p-reaction at 100 GeV/c has been studied. The experiment was performed at the CERN SPS accelerator with the multiphoton hodoscope spectrometer GAMS-400
No description provided.
No description provided.
No description provided.