Search for heavy resonances decaying to Z($\nu\bar{\nu}$)V(q$\bar{q}$') in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 106 (2022) 012004, 2022.
Inspire Record 1923626 DOI 10.17182/hepdata.103856

A search is presented for heavy bosons decaying to Z($\nu\bar{\nu}$)V(qq'), where V can be a W or a Z boson. A sample of proton-proton collision data at $\sqrt{s} =$ 13 TeV was collected by the CMS experiment during 2016-2018. The data correspond to an integrated luminosity of 137 fb$^{-1}$. The event categorization is based on the presence of high-momentum jets in the forward region to identify production through weak vector boson fusion. Additional categorization uses jet substructure techniques and the presence of large missing transverse momentum to identify W and Z bosons decaying to quarks and neutrinos, respectively. The dominant standard model backgrounds are estimated using data taken from control regions. The results are interpreted in terms of radion, W' boson, and graviton models, under the assumption that these bosons are produced via gluon-gluon fusion, Drell-Yan, or weak vector boson fusion processes. No evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on various types of hypothetical new bosons. Observed (expected) exclusion limits on the masses of these bosons range from 1.2 to 4.0 (1.1 to 3.7) TeV.

0 data tables match query

Search for single production of a vector-like T quark decaying to a top quark and a Z boson in the final state with jets and missing transverse momentum at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2022) 093, 2022.
Inspire Record 2006491 DOI 10.17182/hepdata.100426

A search is presented for single production of a vector-like T quark with charge 2/3 $e$, in the decay channel featuring a top quark and a Z boson, with the top quark decaying hadronically and the Z boson decaying to neutrinos. The search uses data collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$ recorded at the CERN LHC in 2016-2018. The search is sensitive to a T quark mass between 0.6 and 1.8 TeV with decay widths ranging from negligibly small up to 30% of the T quark mass. Reconstruction strategies for the top quark are based on the degree of Lorentz boosting of its final state. At 95% confidence level, the upper limit on the product of the cross section and branching fraction for a T quark of small decay width varies between 15 and 602 fb, depending on its mass. For a T quark with decay widths between 10 and 30% of its mass, this upper limit ranges between 16 and 836 fb. For most of the studied range, the results provide the best limits to date. This is the first search for single T quark production based on the full Run 2 data set of the LHC.

0 data tables match query

Search for heavy resonances decaying to WW, WZ, or WH boson pairs in the lepton plus merged jet final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 105 (2022) 032008, 2022.
Inspire Record 1920983 DOI 10.17182/hepdata.102645

A search for new heavy resonances decaying to pairs of bosons (WW, WZ, or WH) is presented. The analysis uses data from proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$. One of the bosons is required to be a W boson decaying to an electron or muon and a neutrino, while the other boson is required to be reconstructed as a single jet with mass and substructure compatible with a quark pair from a W, Z, or Higgs boson decay. The search is performed in the resonance mass range between 1.0 and 4.5 TeV and includes a specific search for resonances produced via vector boson fusion. The signal is extracted using a two-dimensional maximum likelihood fit to the jet mass and the diboson invariant mass distributions. No significant excess is observed above the estimated background. Model-independent upper limits on the production cross sections of spin-0, spin-1, and spin-2 heavy resonances are derived as functions of the resonance mass and are interpreted in the context of bulk radion, heavy vector triplet, and bulk graviton models. The reported bounds are the most stringent to date.

0 data tables match query

Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 04 (2022) 087, 2022.
Inspire Record 1976980 DOI 10.17182/hepdata.114367

A search has been performed for heavy resonances decaying to ZZ or ZW and for axion-like particles (ALPs) mediating nonresonant ZZ or ZH production, in final states with two charged leptons ($\ell$ = e, $\mu$) produced by the decay of a Z boson, and two quarks produced by the decay of a Z, W, or Higgs boson H. The analysis is sensitive to resonances with masses in the range 450 to 2000 GeV. Two categories are defined corresponding to the merged or resolved reconstruction of the hadronically decaying boson. The search is based on data collected during 2016-2018 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. No significant excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-2 and spin-1 resonances are derived as functions of the resonance mass, and exclusion limits on the production of bulk graviton particles and W$'$ bosons are calculated in the framework of the warped extra dimensions and heavy vector triplet models, respectively. In addition, upper limits on the ALP-mediated diboson production cross section and ALP couplings to standard model particles are obtained in the framework of linear and chiral effective field theories. These are the first limits on nonresonant ALP-mediated ZZ and ZH production obtained by the LHC experiments.

0 data tables match query

A search for new resonances in multiple final states with a high transverse momentum $Z$ boson in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 036, 2023.
Inspire Record 2158974 DOI 10.17182/hepdata.132793

A generic search for resonances is performed with events containing a $Z$ boson with transverse momentum greater than 100 GeV, decaying into $e^+e^-$ or $\mu^+\mu^-$. The analysed data collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider correspond to an integrated luminosity of 139 fb$^{-1}$. Two invariant mass distributions are examined for a localised excess relative to the expected Standard Model background in six independent event categories (and their inclusive sum) to increase the sensitivity. No significant excess is observed. Exclusion limits at 95% confidence level are derived for two cases: a model-independent interpretation of Gaussian-shaped resonances with the mass width between 3% and 10% of the resonance mass, and a specific heavy vector triplet model with the decay mode $W'\to ZW \to \ell\ell qq$.

0 data tables match query

Version 2
Combination of searches for singly and doubly charged Higgs bosons produced via vector-boson fusion in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Lett.B 860 (2025) 139137, 2025.
Inspire Record 2807795 DOI 10.17182/hepdata.153847

A combination of searches for singly and doubly charged Higgs bosons, $H^{\pm}$ and $H^{\pm\pm}$, produced via vector-boson fusion is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during Run 2 of the Large Hadron Collider. Searches targeting decays to massive vector bosons in leptonic final states (electrons or muons) are considered. New constraints are reported on the production cross-section times branching fraction for charged Higgs boson masses between 200 GeV and 3000 GeV. The results are interpreted in the context of the Georgi-Machacek model for which the most stringent constraints to date are set for the masses considered in the combination.

0 data tables match query

Combination of searches for singly produced vector-like top quarks in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 111 (2025) 012012, 2025.
Inspire Record 2818839 DOI 10.17182/hepdata.153640

A combination of searches for the single production of vector-like top quarks ($T$) is presented. These analyses are based on proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded in 2015$-$2018 with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. The $T$-quark decay modes considered in this combination are into a top quark and either a Standard Model Higgs boson or a $Z$ boson ($T \to Ht$ and $T \to Zt$). The individual searches used in the combination are differentiated by the number of leptons ($e$, $\mu$) in the final state. The observed data are found to be in good agreement with the Standard Model background prediction. Interpretations are provided for a range of masses and couplings of the vector-like top quark for benchmark models and generalized representations in terms of 95% confidence level limits. For a benchmark signal prediction of a vector-like top quark SU2 singlet with electroweak coupling, $\kappa$, of 0.5, masses below 2.1 TeV are excluded, resulting in the most restrictive limits to date.

0 data tables match query

Evidence of pair production of longitudinally polarised vector bosons and study of CP properties in $ZZ \to 4\ell$ events with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 12 (2023) 107, 2023.
Inspire Record 2709671 DOI 10.17182/hepdata.143611

A study of the polarisation and CP properties in $ZZ$ production is presented. The used data set corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. The $ZZ$ candidate events are reconstructed using two same-flavour opposite-charge electron or muon pairs. The production of two longitudinally polarised $Z$ bosons is measured with a significance of 4.3 standard deviations, and its cross-section is measured in a fiducial phase space to be $2.45 \pm 0.60$ fb, consistent with the next-to-leading-order Standard Model prediction. The inclusive differential cross-section as a function of a CP-sensitive angular observable is also measured. The results are used to constrain anomalous CP-odd neutral triple gauge couplings.

0 data tables match query

Measurement and interpretation of same-sign $W$ boson pair production in association with two jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 04 (2024) 026, 2024.
Inspire Record 2729396 DOI 10.17182/hepdata.141650

This paper presents the measurement of fiducial and differential cross sections for both the inclusive and electroweak production of a same-sign $W$-boson pair in association with two jets ($W^\pm W^\pm jj$) using 139 fb$^{-1}$ of proton-proton collision data recorded at a centre-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity difference. The measured fiducial cross sections for electroweak and inclusive $W^\pm W^\pm jj$ production are $2.92 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb and $3.38 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons $H^{\pm\pm}$ that are produced in vector-boson fusion processes and decay into a same-sign $W$ boson pair is performed. The largest deviation from the Standard Model occurs for an $H^{\pm\pm}$ mass near 450 GeV, with a global significance of 2.5 standard deviations.

0 data tables match query

Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at $\sqrt{s}= 7$ and 8 TeV

The ATLAS & CMS collaborations Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 213, 2023.
Inspire Record 2088291 DOI 10.17182/hepdata.110250

A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.

0 data tables match query