Date

Version 3
Search for a scalar or pseudoscalar dilepton resonance produced in association with a massive vector boson or top quark-antiquark pair in multilepton events at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 110 (2024) 012013, 2024.
Inspire Record 2759506 DOI 10.17182/hepdata.132367

A search for beyond the standard model spin-0 bosons, $\phi$, that decay into pairs of electrons, muons, or tau leptons is presented. The search targets the associated production of such bosons with a W or Z gauge boson, or a top quark-antiquark pair, and uses events with three or four charged leptons, including hadronically decaying tau leptons. The proton-proton collision data set used in the analysis was collected at the LHC from 2016 to 2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The observations are consistent with the predictions from standard model processes. Upper limits are placed on the product of cross sections and branching fractions of such new particles over the mass range of 15 to 350 GeV with scalar, pseudoscalar, or Higgs-boson-like couplings, as well as on the product of coupling parameters and branching fractions. Several model-dependent exclusion limits are also presented. For a Higgs-boson-like $\phi$ model, limits are set on the mixing angle of the Higgs boson with the $\phi$ boson. For the associated production of a $\phi$ boson with a top quark-antiquark pair, limits are set on the coupling to top quarks. Finally, limits are set for the first time on a fermiophilic dilaton-like model with scalar couplings and a fermiophilic axion-like model with pseudoscalar couplings.

140 data tables

Binned representation of the control and signal regions for the combined multilepton event selection and the combined 2016–2018 data set. The control region bins follow their definitions as given in Table 1 of the paper, and the signal region bins correspond to the channels as defined by the lepton flavor composition. The normalizations of the background samples in the control regions are described in Sections 5.1 and 5.2 of the paper. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$, and those satisfying any of the control region requirements are removed from the signal region bins. All subsequent selections given in Tables 2 and 3 of the paper are based on events given in the signal region bins. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.

The $M_{OSSF}$ spectrum for the combined 2L1T, 2L2T, 3L, 3L1T, and 4L event selection (excluding the $\mathrm{Z\gamma}$ control region) and the combined 2016-2018 data set. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.

Dilepton mass spectra for the low mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.

More…

Observation of the Antimatter Hypernucleus $^4_{\bar{\Lambda}}\overline{\hbox{H}}$

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Nature 632 (2024) 1026-1031, 2024.
Inspire Record 2712863 DOI 10.17182/hepdata.145132

At the origin of the Universe, asymmetry between the amount of created matter and antimatter led to the matter-dominated Universe as we know today. The origins of this asymmetry remain not completely understood yet. High-energy nuclear collisions create conditions similar to the Universe microseconds after the Big Bang, with comparable amounts of matter and antimatter. Much of the created antimatter escapes the rapidly expanding fireball without annihilating, making such collisions an effective experimental tool to create heavy antimatter nuclear objects and study their properties, hoping to shed some light on existing questions on the asymmetry between matter and antimatter. Here we report the first observation of the antimatter hypernucleus \hbox{$^4_{\bar{\Lambda}}\overline{\hbox{H}}$}, composed of a $\bar{\Lambda}$ , an antiproton and two antineutrons. The discovery was made through its two-body decay after production in ultrarelativistic heavy-ion collisions by the STAR experiment at the Relativistic Heavy Ion Collider. In total, 15.6 candidate \hbox{$^4_{\bar{\Lambda}}\overline{\hbox{H}}$} antimatter hypernuclei are obtained with an estimated background count of 6.4. The lifetimes of the antihypernuclei \hbox{$^3_{\bar{\Lambda}}\overline{\hbox{H}}$} and \hbox{$^4_{\bar{\Lambda}}\overline{\hbox{H}}$} are measured and compared with the lifetimes of their corresponding hypernuclei, testing the symmetry between matter and antimatter. Various production yield ratios among (anti)hypernuclei and (anti)nuclei are also measured and compared with theoretical model predictions, shedding light on their production mechanisms.

20 data tables

Invariant mass distributions of $^3\hbox{He}+\pi^-$ (A), $^3\overline{\hbox{He}}+\pi^+$ (B), $^4\hbox{He}+\pi^-$ (C) and $^4\overline{\hbox{He}}+\pi^+$ (D). The solid bands mark the signal invariant mass regions. The obtained signal count ($N_{\rm Sig}$), background count ($N_{\rm Bg}$), and signal significance are listed in each panel.

Invariant mass distributions of $^3\hbox{He}+\pi^-$ (A), $^3\overline{\hbox{He}}+\pi^+$ (B), $^4\hbox{He}+\pi^-$ (C) and $^4\overline{\hbox{He}}+\pi^+$ (D). The solid bands mark the signal invariant mass regions. The obtained signal count ($N_{\rm Sig}$), background count ($N_{\rm Bg}$), and signal significance are listed in each panel.

Invariant mass distributions of $^3\hbox{He}+\pi^-$ (A), $^3\overline{\hbox{He}}+\pi^+$ (B), $^4\hbox{He}+\pi^-$ (C) and $^4\overline{\hbox{He}}+\pi^+$ (D). The solid bands mark the signal invariant mass regions. The obtained signal count ($N_{\rm Sig}$), background count ($N_{\rm Bg}$), and signal significance are listed in each panel.

More…

Search for supersymmetry in final states with a single electron or muon using angular correlations and heavy-object identification in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 09 (2023) 149, 2023.
Inspire Record 2182749 DOI 10.17182/hepdata.135454

A search for supersymmetry is presented in events with a single charged lepton, electron or muon, and multiple hadronic jets. The data correspond to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the CERN LHC. The search targets gluino pair production, where the gluinos decay into final states with the lightest supersymmetric particle (LSP) and either a top quark-antiquark ($\mathrm{t\bar{t}}$) pair, or a light-flavor quark-antiquark ($\mathrm{q\bar{q}}$) pair and a virtual or on-shell W boson. The main backgrounds, $\mathrm{t\bar{t}}$ pair and W+jets production, are suppressed by requirements on the azimuthal angle between the momenta of the lepton and of its reconstructed parent W boson candidate, and by top quark and W boson identification based on a machine-learning technique. The number of observed events is consistent with the expectations from standard model processes. Limits are evaluated on supersymmetric particle masses in the context of two simplified models of gluino pair production. Exclusions for gluino masses reach up to 2120 (2050) GeV at 95% confidence level for a model with gluino decay to a $\mathrm{t\bar{t}}$ pair (a $\mathrm{q\bar{q}}$ pair and a W boson) and the LSP. For the same models, limits on the mass of the LSP reach up to 1250 (1070) GeV.

36 data tables

Signal and background distributions of the $\Delta \phi$ variable, as predicted by simulation, for the multi-b analysis, requiring $n_{\textrm{jet}}\geq6$, $L_T>250~\mathrm{GeV}$, $H_T>500~\mathrm{GeV}$. The predicted signal distributions are also shown for two representative combinations of (gluino, neutralino) masses with large (2.2, 0.1) $\mathrm{TeV}$ and small (1.8, 1.3) $\mathrm{TeV}$ mass differences.

Signal and background distributions of the $\Delta \phi$ variable, as predicted by simulation, for the zero-b analysis, requiring $n_{\textrm{jet}}\geq6$, $L_T>350~\mathrm{GeV}$, $H_T>750~\mathrm{GeV}$. The predicted signal distributions are also shown for two representative combinations of (gluino, neutralino) masses with large (2.2, 0.1) $\mathrm{TeV}$ and small (1.8, 1.3) $\mathrm{TeV}$ mass differences.

Distributions of $\Delta\phi$ as obtained from simulation, requiring various $\textrm{t}$ tag multiplicities for the total background.

More…

First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Akerlof, C.W. ; et al.
Phys.Rev.Lett. 131 (2023) 041002, 2023.
Inspire Record 2107834 DOI 10.17182/hepdata.144760

The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60~live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9 GeV/c$^2$. The most stringent limit is set for spin-independent scattering at 36 GeV/c$^2$, rejecting cross sections above 9.2$\times 10^{-48}$ cm$^2$ at the 90% confidence level.

5 data tables

90% CL WIMP SI cross sections, including sensitivities

90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties

90% CL WIMP SDp cross sections, including sensitivities and nuclear structure uncertainties

More…

Search for exotic decays of the Higgs boson into long-lived particles in $pp$ collisions at $\sqrt{s} = 13$ TeV using displaced vertices in the ATLAS inner detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2021) 229, 2021.
Inspire Record 1882568 DOI 10.17182/hepdata.106655

A novel search for exotic decays of the Higgs boson into pairs of long-lived neutral particles, each decaying into a bottom quark pair, is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the LHC. Events consistent with the production of a Higgs boson in association with a leptonically decaying $Z$ boson are analysed. Long-lived particle (LLP) decays are reconstructed from inner-detector tracks as displaced vertices with high mass and track multiplicity relative to Standard Model processes. The analysis selection requires the presence of at least two displaced vertices, effectively suppressing Standard Model backgrounds. The residual background contribution is estimated using a data-driven technique. No excess over Standard Model predictions is observed, and upper limits are set on the branching ratio of the Higgs boson to LLPs. Branching ratios above 10% are excluded at 95% confidence level for LLP mean proper lifetimes $c\tau$ as small as 4 mm and as large as 100 mm. For LLP masses below 40 GeV, these results represent the most stringent constraint in this lifetime regime.

7 data tables

95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 16$ GeV.

95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 25$ GeV.

95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 35$ GeV.

More…

Version 3
Search for long-lived particles decaying to jets with displaced vertices in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, A. ; Adam, W. ; et al.
Phys.Rev.D 104 (2021) 052011, 2021.
Inspire Record 1861146 DOI 10.17182/hepdata.102798

A search is presented for long-lived particles produced in pairs in proton-proton collisions at the LHC operating at a center-of-mass energy of 13 TeV. The data were collected with the CMS detector during the period from 2015 through 2018, and correspond to a total integrated luminosity of 140 fb$^{-1}$. This search targets pairs of long-lived particles with mean proper decay lengths between 0.1 and 100 mm, each of which decays into at least two quarks that hadronize to jets, resulting in a final state with two displaced vertices. No significant excess of events with two displaced vertices is observed. In the context of $R$-parity violating supersymmetry models, the pair production of long-lived neutralinos, gluinos, and top squarks is excluded at 95% confidence level for cross sections larger than 0.08 fb, masses between 800 and 3000 GeV, and mean proper decay lengths between 1 and 25 mm.

32 data tables

Event yields in the control samples in data. The ''one-vertex'' events correspond to events containing exactly one vertex with the specified number of tracks. The ''two-vertex'' events have two or more vertices containing the specified numbers of tracks. We seek the signal in the $\geq$5-track two-vertex sample.

The distribution of distances between vertices in the $x$-$y$ plane, $d_{\mathrm{VV}}$, for three simulated multijet signals each with a mass of 1600 GeV, with the background template distribution overlaid. The production cross section for each signal model is assumed to be the lower limit excluded by CMS-EXO-17-018, corresponding to values of 0.8, 0.25, and 0.15 fb for the samples with $c\tau =$ 0.3, 1.0, and 10 mm, respectively. The last bin includes the overflow events. The two vertical pink dashed lines separate the regions used in the fit.

Multijet signal efficiencies as a function of the signal mass and lifetime for events satisfying all event and vertex requirements, with corrections based on systematic differences in the vertex reconstruction efficiency between data and simulation.

More…

Search for dark matter produced in association with a single top quark in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 860, 2021.
Inspire Record 1831036 DOI 10.17182/hepdata.99906

This paper presents a search for dark matter in the context of a two-Higgs-doublet model together with an additional pseudoscalar mediator, $a$, which decays into the dark-matter particles. Processes where the pseudoscalar mediator is produced in association with a single top quark in the 2HDM+$a$ model are explored for the first time at the LHC. Several final states which include either one or two charged leptons (electrons or muons) and a significant amount of missing transverse momentum are considered. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s} = 13$ TeV during LHC Run2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess above the Standard Model predictions is found. The results are expressed as 95% confidence-level limits on the parameters of the signal models considered.

71 data tables

Efficiencies of the DMt samples in the tW1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.

Acceptances on TRUTH level of the DMt samples in the tW1L channel for all bins in the SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.

Efficiencies of the DMt samples in the tW1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.

More…

$J/\psi$ polarization in p+p collisions at $\sqrt{s}$ = 200 GeV in STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 739 (2014) 180-188, 2014.
Inspire Record 1263695 DOI 10.17182/hepdata.96232

We report on a polarization measurement of inclusive $J/\psi$ mesons in the di-electron decay channel at mid-rapidity at 2 $<p_{T}<$ 6 GeV/$c$ in $p+p$ collisions at $\sqrt{s}$ = 200 GeV. Data were taken with the STAR detector at RHIC. The $J/\psi$ polarization measurement should help to distinguish between different models of the $J/\psi$ production mechanism since they predict different $p_{T}$ dependences of the $J/\psi$ polarization. In this analysis, $J/\psi$ polarization is studied in the helicity frame. The polarization parameter $\lambda_{\theta}$ measured at RHIC becomes smaller towards high $p_{T}$, indicating more longitudinal $J/\psi$ polarization as $p_{T}$ increases. The result is compared with predictions of presently available models.

13 data tables

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $2 < p_{T}^{J/\psi} < 3$ GeV/c

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $3 < p_{T}^{J/\psi} < 4$ GeV/c

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $4 < p_{T}^{J/\psi} < 6$ GeV/c

More…