Showing 2 of 2 results
Anomalies in past neutrino measurements have led to the discovery that these particles have non-zero mass and oscillate between their three flavors when they propagate. In the 2010's, similar anomalies observed in the antineutrino spectra emitted by nuclear reactors have triggered the hypothesis of the existence of a supplementary neutrino state that would be sterile i.e. not interacting via the weak interaction. The STEREO experiment was designed to study this scientific case that would potentially extend the Standard Model of Particle Physics. Here we present a complete study based on our full set of data with significantly improved sensitivity. Installed at the ILL (Institut Laue Langevin) research reactor, STEREO has accurately measured the antineutrino energy spectrum associated to the fission of 235U. This measurement confirms the anomalies whereas, thanks to the segmentation of the STEREO detector and its very short mean distance to the core (10~m), the same data reject the hypothesis of a light sterile neutrino. Such a direct measurement of the antineutrino energy spectrum suggests instead that biases in the nuclear experimental data used for the predictions are at the origin of the anomalies. Our result supports the neutrino content of the Standard Model and establishes a new reference for the 235U antineutrino energy spectrum. We anticipate that this result will allow to progress towards finer tests of the fundamental properties of neutrinos but also to benchmark models and nuclear data of interest for reactor physics and for observations of astrophysical or geo-neutrinos.
12B prediction used for the control of the energy scale. The three most intense beta decay branches of 12B have been taken into account, covering 99.94% of the total decay rate. The corresponding spectra are given in bins of 50 keV, normalized to their respective branching ratio. The [no rad. corr] notation stands for the fact that we didn't include the radiative corrections in our nominal simulation, as all radiated photons should be absorbed in the STEREO target volume. However the full effect of these corrections is included in the uncertainty of the predicted spectrum. It can be deduced from the comparison with the full calculation of the beta branches given here as well.
STEREO IBD Spectrum for phase-II and phase-III. The spectra are given in nu/day and normalized to reactor power in cm2/fission/MeV with 22 250keV-wide measured-energy bins, ranging from 1.625MeV (lower edge of lowest bin) to 7.125 MeV (upper edge of highest bin). The normalized rates (cm2/fission/MeV) are split between U5 and non-U5 components (Aluminium and Off-Equilibrium corrections).
STEREO Global Covariance Matrix for phase-II and phase-III. The matrix is given as a 44x44 matrix, with 44 bins for phase-II (bins 1-22) and phase-III (bins 23-44) corresponding to the prompt spectra with 22 250-keV bins, ranging from 1.625 to 7.125 MeV; it is expressed in (cm2/fission/MeV)².
STEREO detection and selection efficiency for Phase-II and III. The efficiency is given in 22 antineutrino energy bins, bins 2-21 corresponding to the binning of the unfolded spectrum ranging 2.375-7.875 MeV, bin 1 integrates from 1.875 MeV to 2.375 MeV and bin 22 integrates from 7.875 MeV to 8.125 MeV.
STEREO Detector Response Matrix for Phase-II and III. The matrix is given as a 22x22 matrix, with 22 rows corresponding to the 22 bins of the prompt spectrum (1.625-7.125MeV) and 22 columns corresponding to 22 true antineutrino energy bins described with the efficiency vectors. Before use, the matrix should be normalized so that $\sum_j R_{ji} = \text{efficiency}_i$.
STEREO unfolded U-235 spectrum, given with 20 antineutrino energy bins (bins 1-19 are 250 keV wide, with centers ranging from 2.5 MeV to 7 MeV and bin 20 is 750 keV wide with center at 7.5 MeV). The prediction from Huber multiplied by the IBD cross section is also given.
Covariance matrix of the unfolded U-235 spectrum, given as a 20x20 matrix with 20 antineutrino energy bins (bins 1-19 are 250 keV wide, with centers ranging from 2.5 MeV to 7 MeV and bin 20 is 750 keV wide with center at 7.5 MeV).
Filter matrix associated with the Tikhonov-regularized unfolding. The filter matrix $A$ encodes all biases coming from the unfolding process itself. The matrix is given as a 22x22 matrix, bins 2-21 correspond to the 20 bins of the unfolded spectrum (2.375-7.875 MeV), bin 1 integrates from 1.875 MeV to 2.375 MeV, bin 22 integrates from 7.875 MeV to 8.125 MeV. It brings any model from true $E_\nu$ space to the filtered $E_\nu$ space where it can be compared to the unfolded spectrum $\Phi$, for instance with $\chi2 = (A \cdot \text{model} - \Phi)^T V_\Phi^{-1} (A\cdot \text{model} - \Phi)$. The unfolding process introduce very little biases so $A$ is close to diagonal.
STEREO IBD Spectrum in each cell for phase-II and phase-III. The spectra are given in nu/day with 11 500keV-wide measured-energy bins, ranging from 1.625MeV (lower edge of lowest bin) to 7.125 MeV (upper edge of highest bin), with statistical uncertainties. We also give the no-oscillation model after a common shape to all cells has been absorbed by the fitting procedure.
STEREO $\Delta\chi^2$ map (2D Feldman-Cousins method) obtained from STEREO data. $\Delta\chi^2$ is defined as $\Delta\chi^2 = \chi^2_\text{H0} - \chi^2_\text{min}$ with H0 the no-oscillation hypothesis. A $(\sin2\theta_{ee},\Delta m^2_{41})$ point is excluded at n%CL if $\Delta\chi^2 > \Delta\chi^2_{crit,n}$. To be used with the critical-$\Delta\chi^2$ map to obtain the 2D exclusion contour.
STEREO median $\Delta\chi^2$ map (2D Feldman-Cousins method) obtained from $10^4$ no-oscillation toys. $\Delta\chi^2$ is defined as $\Delta\chi^2 = \chi^2_\text{H0} - \chi^2_\text{min}$ with H0 the no-oscillation hypothesis. A $(\sin2\theta_{ee},\Delta m^2_{41})$ point is excluded at n%CL if $\Delta\chi^2 > \Delta\chi^2_{crit,n}$. To be used with the critical-$\Delta\chi^2$ map to obtain the 2D sensitivity contour.
STEREO $\Delta T$ map (CLs method) obtained from STEREO data. CLs is defined as $(1-p1)/(1-p0)$ with $p0$ [$p1$] the p-value from the $\Delta T$ p.d.f. obtained with toys following the no-oscillation $(0,0)$ [$(\sin 2\theta_{ee},\Delta m^2_{41})$] model. $\Delta T$ is defined as $\Delta T = \chi^2_\text{H1} - \chi^2_\text{H0}$ with H0 [H1] the no-oscillation hypothesis [the $(\sin 2\theta_{ee},\Delta m^2_{41})$ hypothesis]. A $(\sin 2\theta_{ee},\Delta m^2_{41})$ point is excluded at n%CL if $\Delta T > \Delta T_{crit,n}$. To be used with the critical $\Delta T$ map to obtain the CLs exclusion contour.
STEREO median $\Delta T$ map (CLs method) obtained from $5\times 10^3$ no-oscillation toys. CLs is defined as $(1-p1)/(1-p0)$ with $p0$ [$p1$] the p-value from the $\Delta T$ p.d.f. obtained with toys following the no-oscillation $(0,0)$ [$(\sin 2\theta_{ee},\Delta m^2_{41})$] model. $\Delta T$ is defined as $\Delta T = \chi^2_\text{H1} - \chi^2_\text{H0}$ with H0 [H1] the no-oscillation hypothesis [the $(\sin 2\theta_{ee},\Delta m^2_{41})$ hypothesis]. A $(\sin 2\theta_{ee},\Delta m^2_{41})$ point is excluded at n%CL if $\Delta T > \Delta T_{crit,n}$. To be used with the critical $\Delta T$ map to obtain the CLs sensitivity contour.
STEREO exclusion and sensitivity contours in the $(\sin 2\theta_{ee},\Delta m^2_{41})$ plane (2D Feldman-Cousins method).
STEREO exclusion and sensitivity contours in the $(\sin 2\theta_{ee},\Delta m^2_{41})$ plane (CLs method).
STEREO critical-$\Delta\chi^2$ map (2D Feldman-Cousins method) for 95%CL and 99%CL. A $(\sin2\theta_{ee},\Delta m^2_{41})$ point is excluded at n%CL if $\Delta\chi^2 > \Delta\chi^2_{crit,n}$. To be used with the $\Delta\chi^2$ maps obtained with STEREO data (exclusion) or with no-oscillation toys (sensitivity).
STEREO critical $\Delta T$ map (CLs method) for 95%CL and 99%CL. A $(\sin2\theta_{ee},\Delta m^2_{41})$ point is excluded at n%CLs if $\Delta T > \Delta T_{crit,n}$. To be used with the $\Delta T$ maps obtained with STEREO data (exclusion) or with no-oscillation toys (sensitivity).
An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb$^{-1}$. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred $\mu$m to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons Z$_\mathrm{D}$, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with $m_\mathrm{Z_D}$ greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for $c\tau$(Z$_\mathrm{D}$) (varying with $m_\mathrm{Z_D}$) between 0.03 and ${\approx}$ 0.5 mm, and above ${\approx}$ 0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2018 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 28$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2018 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 28$ GeV.
Fractions of signal events with zero (green), one (blue), and two (red) STA muons matched to TMS muons by the STA-to-TMS muon association procedure, as a function of true $L_{xy}$, in all simulated $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal samples combined. The fractions are computed relative to the number of signal events passing the trigger and containing two STA muons with more than 12 muon detector hits and $p_T > 10$ GeV matched to generated muons from $X \rightarrow \mu \mu$ decays.
Fractions of signal events with zero (green), one (blue), and two (red) STA muons matched to TMS muons by the STA-to-TMS muon association procedure, as a function of true $L_{xy}$, in all simulated $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal samples combined. The fractions are computed relative to the number of signal events passing the trigger and containing two STA muons with more than 12 muon detector hits and $p_T > 10$ GeV matched to generated muons from $X \rightarrow \mu \mu$ decays.
Comparison of the number of events observed in 2016 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 10\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 10\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 30\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 30\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 40\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 40\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 60\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 60\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $c\tau(Z_D)$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $c\tau(Z_D)$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $\epsilon$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $\epsilon$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Background estimation and observed number of events in the STA-STA dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown. The mass interval is followed by the estimated and observed counts for the given year. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the STA-STA dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown, followed by the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ for the given year. The quoted uncertainties are statistical only.
Background estimation and observed number of events in the TMS-TMS dimuon category in 2016 data. The mass interval is followed by the estimated and observed counts within each $min(d_0 / \sigma_{d_0})$ bin in this mass interval. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the TMS-TMS dimuon category in 2016 data. For each mass interval, the table shows the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ in each of the three $\text{min}(d_0 / \sigma_{d_0})$ bins. The quoted uncertainties are statistical only
Background estimation and observed number of events in the TMS-TMS dimuon category in 2018 data. The mass interval is followed by the estimated and observed counts within each $min(d_0 / \sigma_{d_0})$ bin in this mass interval. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the TMS-TMS dimuon category in 2016 data. For each mass interval, the table shows the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ in each of the three $\text{min}(d_0 / \sigma_{d_0})$ bins. The quoted uncertainties are statistical only
Correspondence between the mass intervals in the TMS-TMS category and the parameters of the simulated signal samples.
Correspondence between the probed LLP masses and the chosen mass intervals in the TMS-TMS category.
Background estimation and observed number of events in the STA-TMS dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown. The mass interval is followed by the estimated and observed counts for the given year. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the STA-TMS dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown, followed by the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ for the given year. The quoted uncertainties are statistical only.
Number of events passing consecutive sets of selection criteria for 2018 collision data and the signal process $\Phi(125) \rightarrow XX(20\ GeV, c\tau = 13\ cm) \rightarrow \mu\mu$. Each row introduces a new criterion that is applied in addition to the selection of the previous row. In addition to the total number of events, N(events), the event yields of the individual dimuon vertex categories, STA-STA, TMS-TMS, and STA-TMS, are shown in separate columns for each data set. In these columns, events containing selected dimuons of different categories are independently counted for each category.
Number of events passing consecutive sets of selection criteria, in 2018 data and in a sample of simulated $\Phi \rightarrow XX \rightarrow \mu\mu$ signal events with $m(H) = 125\ GeV$, $m(X) = 20\ GeV$, and $c\tau = 13\ cm$. Each row introduces a new criterion that is applied in addition to the selection of the previous row. In addition to the total number of events $N(\text{total})$, the event yields in the individual dimuon categories, STA-STA, TMS-TMS, and STA-TMS, are shown in separate columns for each data set. In these columns, events containing selected dimuons of different categories are counted independently for each category.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 350\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 350\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 10\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 10\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 30\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 30\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 40\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 40\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 60\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 60\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper. Efficiencies for dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the STA-TMS and TMS-TMS dimuon categories are equal to zero.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper. Efficiencies for dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the STA-TMS and TMS-TMS dimuon categories are equal to zero.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.