The ratio of the cross sections for photoproduction of neutral pions from neutrons to that from protons has been obtained at average photon energies of 750, 875, and 1050 mev at a pion CM angle of 60° and at average photon energies of 875 and 1050 mev at a pion CM angle of 90°. The experimental technique required simultaneous detection of both the pions and the nucleons. Pions were detected by three scintillation counters. Lead plates of 2.4 radiation lengths and 1.2 radiation lengths were placed in front of the second and third counters. Neutral pions were identified by the absence of output in the first counter and the large outputs in the second and third counters. Nucleons were detected in two scintillation counters. The second of the two counters is 11” thick and has approximately 20% efficiency of detecting neutrons. Neutrons were identified by the absence of output in the first counter. The energy of the incident photons was determined by synchrotron subtraction. Since the statistical accuracy of synchrotron subtraction is poor, a system of three fast coincidence circuits was used as a time-of-flight instrument to reduce the number of events initiated by low energy photons. The statistical errors assigned to the ratio range between 15-30%. The results of this experiment agree with the results of Bingham within statistical errors, but show a general tendency for the σ^(no)/ σ^o ratio to lower. The ratio of σ^(no)/ σ^o obtained in this experiment ranges between 0.4 and 0.8. The cross sections for neutral pion photoproduction from neutrons are derived from the σ^(no)/ σ^o ratio and the Caltech data on neutral pion photoproduction from hydrogen.
No description provided.
No description provided.
Measurements of the cross section for photoproduction of [...] mesons from hydrogen have been extended to angles as small as 5[...] in the c. m. system, using a magnetic spectrometer. At a photon energy of 1025 Mev, the cross section decreases as the angle changes from 5[degrees] to 13[degrees], reaching a minimum before increasing again to the maximum near 40[degrees] which has been previously observed (5). Less extensive measurements at energies 700, 800, 900, and 960 Mev all show a similar rapid decrease with angle in the angular range less than 15[degrees] c.m., although below 960 Mev no actual minimum is observed. These effects at small angles arise presumably from the "retardation term", or "meson current" term and its interference with other contributions to the photoproduction amplitude. It is interesting that a minimum near 15[degrees] is characteristic of the pure Born approximation (retardation term plus "S-wave"). Values of the 0[degree] cross section that are much more accurate than previous estimates have been obtained. An attempt has been made to extract a value of the pion-nucleon coupling constant by an extrapolation into the region cos [...]. Using the best set of data, the value obtained was [...].
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.