We present measurements from a spark chamber experiment of the differential cross-sections for p p → π − π + , K − K + at 20 momenta in the range 0.8–2.4 GeV/ c (c.m. energy 2.02 to 2.57 GeV). The c.m. angular range was −0.95 < cos θ ∗ < 0.95 . There are about 2000π − π + events and about 300 K − K + events at each momentum.
ALL ANGLES.
Differential cross sections have been measured for the interactions p p → π − π + and p p → K − K + over a centre of mass angular range −0.95 ⩽ cos θ ∗ ⩽ 0.95 at 20 incident momenta between 0.79 and 2.43 GeV/ c . A magnetic spectrometer with wire spark chambers was used. Typically 2000 π − π + and 300 K − K + events were obtained at each momentum. Results are compared with those from related experiments.
No description provided.
No description provided.
No description provided.
None
proton-beryllium TOTAL cross section ( 278 mb ) was used for normalization.
Proton-beryllium TOTAL (???) cross section ( 278 mb ) was used for normalization.
Using the CUSB-II detector at the Cornell Electron Storage Ring, we have measured Bμμ, the branching fraction into muons, of the Υ’’ meson. We find Bμμ(Υ’’)=(1.53±0.33±0.21)%, from which the Υ’’ total decay width is 25.5±5.0 keV. From this result we obtain αs=0.170−0.012+0.015, ΛMS¯=148−39+56 MeV. (MS¯ denotes the modified minimal-subtraction scheme).
No description provided.
The reaction γγ→π0η has been investigated with the Crystal Ball detector at the DESY storage ring DORIS II. Formation of δ(980) and A2(1320) has been observed with γγ partial widths Γγγ(A2)=1.14±0.20±0.2 6 keV and Γγγ(δ)B(δ→πη)=0.19±0.07 −0.07+0.10 keV.
No description provided.
No description provided.
Cross sections for the $\gamma p \to K^+ \Lambda$ have been measured at backward angles using linearly polarized photons in the range 1.50 to 2.37 GeV. In addition, the beam asymmetry for this reaction has been measured for the first time at backward angles. The $\Lambda$ was detected at forward angles in the LEPS spectrometer via its decay to $p\pi^-$ and the K^+ was inferred using the technique of missing mass. These measurements, corresponding to kaons at far backward angles in the center-of-mass frame, complement similar CLAS data at other angles. Comparison with theoretical models shows that the reactions in these kinematics provide further opportunities to investigate the reaction mechanisms of hadron dynamics.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.5 to 1.8 GeV.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.8 to 2.1 GeV.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 2.1 to 2.4 GeV.
The polarization and magnetic moment of the $\Sigma^+$ hyperon have been determined by analyzing 137,300 $\Sigma^+ \to p \pi^0, \pi^0 \to 2 \gamma$ decays. A beam of + inclusively-produced, polarized $\Sigma^+$ hyperons was generated in a Fermilab Meson Lab beamline by 400 GeV protons incident on a beryllium target. The $\Sigma^+$'s were produced at an angle of 5 mrad and ranged in momentum from 140 GeV/c to 350 GeV/c. + 0 The $\Sigma^+ \to p \pi^0, \pi \to 2 \gamma$ decays were detected by a multiwire proportional and drift chamber spectrometer with a lead glass array....
No description provided.
No description provided.
A systematic study of the spectra and yields of K+ and K− is reported by experiment E866 as a function of centrality in Au+Au collisions at 11.6A GeV/c. The invariant transverse spectra for both kaon species are well described by exponentials in mt, with inverse slope parameters that are largest at midrapidity and which increase with centrality. The inverse slopes of the K+ spectra are slightly larger than the inverse slopes of the K− spectra. The kaon rapidity density peaks at midrapidity with the K+ distribution wider in rapidity than K−. The integrated total yields of K+ and K− increase nonlinearly and steadily with the number of projectile participants. The yield per participant for kaons is two to three times larger than the yield from N−N collisions. This enhancement suggests that the majority of kaons in central Au+Au reactions are produced in secondary hadronic collisions. There is no evidence for an onset of additional kaon production from a possible small volume of baryon-rich quark-gluon plasma. The differences between K+ and K− rapidity distributions and transverse spectra are consistent with a lower phase space for K− production due to a higher energy threshold. These differences also exclude simple thermal models that assume emission from a common equilibrated system.
In this case FRAGB=NUCLEAR FRAG + PROTONS.
In this case FRAGB = NUCLEAR FRAG + PROTONS.
We have measured the cross section $\sigma(e^+e^-\to \pi^+\pi^- \gamma)$ at an energy $W=m_\phi=1.02$ GeV with the KLOE detector at the electron-positron collider DA$\Phi$NE. From the dependence of the cross section on the invariant mass of the two-pion system, we extract $\sigma(e^+e^-\to \pi^+\pi^-)$ for the mass range $0.35
The differential cross section as a function of the invariant mass of the di-pion system in the angular region THETA(PIPI) <15 DEGREES or THETA(PIPI) >165 DEGREES and THETA(PI) in the region 0 to 180 DEGREES.
The physical cross section for E+ E- --> PI+ PI- including FSR and vacuum polarization effects.
The pion form factor with FSR and vacuum polarization effects removed.
The cross section for the reaction [...] was measured at the Caltech synchrotron. The [...] was detected by measuring its decay gamma rays with two lead glass, total absorption Cherenkov counters. The results are three angular distributions at k = 911, 1180, and 1390 MeV, at forward angles from 3 degrees to 90 degrees. The deuteron/proton ratio differs significantly from 2.0, but final state effects from the use of a deuteron target make impossible quantitative conclusions about the neutron cross section.
No description provided.
No description provided.
No description provided.