This investigation was performed with a 24-liter propane bubble chamber [i] and is a continu- ation of our previous work on the production of strange particles by 7-8-BeV 1r- mesons on hydrogen and carbon. [ 2 - 5 ] The properties of 1r 0 mesons inferred from the y quanta accom- panying A and K 0 production are given, and are compared with the properties of 1r+ and 7r- mesons emitted in A and K 0 production processes. The possibility of a resonance with radi- ative decay is noted.
No description provided.
No description provided.
Data on inclusive jet production in the transverse-momentum (p⊥) range 0-8 GeV/c for 200-GeV/c p, π−, π+, K−, K+, and p¯ incident on a hydrogen target are presented. The jet cross section is fully corrected for losses and biases, and compared with the predictions of a model based on quantum chromodynamics. Both the absolute cross section and the inclusive charged-particle distributions inside and outside the jet are in qualitative agreement with the model.
No description provided.
No description provided.
No description provided.
We present differential cross-section data for the reaction π+p→π+p near 180° in the center-of-mass system at beam momenta between 3.25 GeVc and 10 GeVc.
No description provided.
No description provided.
Upper limits are presented for the differential cross section in the reactions π−p→K+Σ− and π−p→K+Y*−(1385) with small momentum transfer from π− to K+.
EXTRAPOLATED TO T=0 ASSUMING SLOPE IS 5 GEV**-2.
ISOTROPIC ANGULAR DISTRIBUTION ASSUMED IN GIVEN T-RANGE.
Measurements of the differential cross section for the reactions π+p→K+Σ+ and π+p→K+Y*+(1385) are reported at 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 6.0, 10.0, and 14.0 GeV/c. Polarization in π+p→K+Σ+ is also reported at 6.0, 10.0, and 14.0 GeV/c. At small |t|, the cross section for π+p→K+Σ+ is well described by an exponential Aebt with slopes in the range b≈8−10 (GeV/c)−2; for |t|>0.5 (GeV/c)2 this slope decreases considerably. The cross section for π+p→K+Y*+(1385) is well described for |t|>0.2 (GeV/c)2 by a single exponential of slope about half that for π+p→K+Σ+; there is no break near |t|>0.5 (GeV/c)2. We observe a dip in this cross section near t=0. The polarization in π+p→K+Σ+ is consistent with zero for |t|<0.4 (GeV/c)2 and becomes large and positive for larger |t|.
No description provided.
No description provided.
No description provided.
We have performed an experiment to study the reaction π−+p→η+n near threshold, preliminary to a forthcoming measurement of charge asymmetry in η-meson decay. The η was identified by the velocity of the associated neutron. We detected neutrons produced in the forward hemisphere in the center-of-mass system corresponding to the most energetic neutrons in the laboratory. Data were taken at π− momenta between 670 and 805 MeVc. The four neutron detectors made it possible to detect neutrons at angles of 0° to 21° from the incident pion beam. We present backward differential cross sections for both pion charge exchange and η production calculated from the data. We looked for η′ at pion momenta of 1.5 BeVc and observed none. We obtained σ(π−p→nη′)≤60 μb.
No description provided.
No description provided.
No description provided.
The differential cross section for elastic scattering of 3.63−GeVc π− mesons on protons was studied with a hydrogen bubble chamber, the emphasis being on large-angle scattering. From 90 to 180° in the barycentric system, the cross section is roughly flat with an average value of 2.7±1.0 μb/sr. Near and at 180°, there may be a slight peak of magnitude 10±6 μb/sr. But if such a peak exists, it is only one-third to one-fourth the size of the 180° peak found in 4.0 GeVc π++p elastic scattering. In addition to comparison with other π−+p and π++p large-angle elastic-scattering measurements, this measurement is compared with large-angle p+p elastic scattering. In the forward hemisphere a small peak or a plateau exists at cos θ*=+0.60. This appears to be a second diffraction maximum such as has been found in lower-energy π+p elastic scattering. A survey of indications of such a second diffraction maximum in other π+p measurements shows that it always occurs in the vicinity of −t=1.2 (GeVc)2, where t is the square of the four-momentum transfer. As the incident momentum increases, the relative size of this second maximum decreases.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.