The photoproduction of positive pions from hydrogen at energies of 1.1 to 1.4 GEV

Kilner, Joseph R. ; Walker, Robert Lee ;
CIT-4, 1963.
Inspire Record 44252 DOI 10.17182/hepdata.37169

A magnetic spectrometer and counter telescope system was used to detect positive pions photoproduced singly in a liquid hydrogen target. Measurements of the differential cross section were made at mean laboratory photon energies, k = 1.1, 1.2, 1.3, and 1.4 GeV and in the angular range from 5° to 165 ° in the center-of-momentum system of the pion. The shape of the angular distribution of the differential cross sections at each value of k is very similar to that of the previously measured distribution at k = 1.0 GeV. The angular distributions were integrated to give the total cross sections. The third pion-nucleon "resonance" peak is seen to be very close to k = 1.0 GeV. A leveling off of the total cross section at k = 1.4 GeV may be due to the fourth "resonance". The accurate small angle data at k = 1.1 and 1.2 GeV permitted a reasonable extrapolation of the differential cross section to the pion-nucleon pole. The value of the pion-nucleon coupling constant, f, was extracted from this extrapolation. The result was f^2 = 0.078 ± 0.011.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Polarization of the Recoil Proton from the Neutral Photoproduction at 800 and 910 Mev

Mencuccini, C. ; Querzoli, R. ; Salvini, G. ;
Phys.Rev. 126 (1962) 1181-1182, 1962.
Inspire Record 944983 DOI 10.17182/hepdata.26790

The measurements on the polarization of the recoil protons from the process γ+p→π0+p have been extended to higher γ-ray energies, at 90° in the center-of-mass system. We have found at 910 Mev a polarization, P=−0.45±0.07; at 800 Mev, P=−0.42±0.10. The rather high values of P agree with the hypothesis that the neutral photoproduction in the 500-1000 Mev range can be described by the well-known three resonant states, and strongly indicate that the second and third resonance have opposite parity. The probable quantum numbers are: T=12, J=32, D pion wave for the second resonance; T=12, J=52, F wave for the third resonance.

1 data table

No description provided.


Production of Pion Resonances in pi+ p Interactions.

Alff-Steinberger, C. ; Berley, D. ; Colley, D. ;
Phys.Rev.Lett. 9 (1962) 322, 1962.
Inspire Record 48453 DOI 10.17182/hepdata.19352

None

1 data table

No description provided.


The ratio of π° photoproductions from neutrons and protons in deuterium in the energy range of 700 to 1100 mev.

Chang, Tseng-Hsu ; Walker, Robert Lee ;
CIT-12, 1962.
Inspire Record 44258 DOI 10.17182/hepdata.37218

The ratio of the cross sections for photoproduction of neutral pions from neutrons to that from protons has been obtained at average photon energies of 750, 875, and 1050 mev at a pion CM angle of 60° and at average photon energies of 875 and 1050 mev at a pion CM angle of 90°. The experimental technique required simultaneous detection of both the pions and the nucleons. Pions were detected by three scintillation counters. Lead plates of 2.4 radiation lengths and 1.2 radiation lengths were placed in front of the second and third counters. Neutral pions were identified by the absence of output in the first counter and the large outputs in the second and third counters. Nucleons were detected in two scintillation counters. The second of the two counters is 11” thick and has approximately 20% efficiency of detecting neutrons. Neutrons were identified by the absence of output in the first counter. The energy of the incident photons was determined by synchrotron subtraction. Since the statistical accuracy of synchrotron subtraction is poor, a system of three fast coincidence circuits was used as a time-of-flight instrument to reduce the number of events initiated by low energy photons. The statistical errors assigned to the ratio range between 15-30%. The results of this experiment agree with the results of Bingham within statistical errors, but show a general tendency for the σ^(no)/ σ^o ratio to lower. The ratio of σ^(no)/ σ^o obtained in this experiment ranges between 0.4 and 0.8. The cross sections for neutral pion photoproduction from neutrons are derived from the σ^(no)/ σ^o ratio and the Caltech data on neutral pion photoproduction from hydrogen.

2 data tables

No description provided.

No description provided.


Total Cross Sections for Negative Pions on Protons at 230, 290, 370, 427, and 460 Mev

Caris, John C. ; Goodwin, Lester K. ; Kenney, Robert W. ; et al.
Phys.Rev. 122 (1961) 262-264, 1961.
Inspire Record 944986 DOI 10.17182/hepdata.26810

Total cross sections for negative pions on protons were measured at laboratory energies of 230, 290, 370, 427, and 460 Mev. The measurements were made in the same pion beams as and at energies identical with those of our π−−p differential scattering experiments. Comparisons of the total and differential scattering can be made with the dispersion theory at a given energy without introducing the systematic errors that would normally enter due to uncertainties in the parameters of more than one pion beam. The measured total cross sections are found to agree within statistics with other measured values, and with the sums of elastic, inelastic, and charge-exchange cross sections measured at this laboratory. The results are:

1 data table

No description provided.


Charge-Exchange Scattering of Negative Pions by Hydrogen at 230, 260, 290, 317, and 371 Mev

Caris, John C. ; Kenney, Robert W. ; Perez-Mendez, Victor ; et al.
Phys.Rev. 121 (1961) 893-904, 1961.
Inspire Record 944987 DOI 10.17182/hepdata.805

The differential cross section for charge-exchange scattering of negative pions by hydrogen has been observed at 230, 260, 290, 317, and 371 Mev. The reaction was observed by detecting one gamma ray from the π0 decay with a scintillation-counter telescope. A least-squares analysis was performed to fit the observations to the function dσdω=Σl=15alPl−1(cosθ) in the c.m. frame. The best fit to our experimental measurements requires only s- and p-wave scattering. The results (in mb) are: The least-squares analysis indicates that d-wave scattering is not established in this energy range.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Photoproduction of positive pions from hydrogen at small angles at energies 700 to 1025 mev

Boyden, James Harrison ; Walker, Robert Lee ;
CIT (1), 1961.
Inspire Record 44250 DOI 10.17182/hepdata.37215

Measurements of the cross section for photoproduction of [...] mesons from hydrogen have been extended to angles as small as 5[...] in the c. m. system, using a magnetic spectrometer. At a photon energy of 1025 Mev, the cross section decreases as the angle changes from 5[degrees] to 13[degrees], reaching a minimum before increasing again to the maximum near 40[degrees] which has been previously observed (5). Less extensive measurements at energies 700, 800, 900, and 960 Mev all show a similar rapid decrease with angle in the angular range less than 15[degrees] c.m., although below 960 Mev no actual minimum is observed. These effects at small angles arise presumably from the "retardation term", or "meson current" term and its interference with other contributions to the photoproduction amplitude. It is interesting that a minimum near 15[degrees] is characteristic of the pure Born approximation (retardation term plus "S-wave"). Values of the 0[degree] cross section that are much more accurate than previous estimates have been obtained. An attempt has been made to extract a value of the pion-nucleon coupling constant by an extrapolation into the region cos [...]. Using the best set of data, the value obtained was [...].

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of polarization observables $\textbf{T}$, ${\textbf{P}}$, and ${\textbf{H}}$ in $\mathbf {\pi ^0}$ and $\mathbf {\eta }$ photoproduction off quasi-free nucleons

The CBELSA/TAPS collaboration Jermann, N. ; Krusche, B. ; Metag, V. ; et al.
Eur.Phys.J.A 59 (2023) 232, 2023.
Inspire Record 2712592 DOI 10.17182/hepdata.145075

The target asymmetry T, recoil asymmetry P, and beam-target double polarization observable H were determined in exclusive $\pi ^0$ and $\eta $ photoproduction off quasi-free protons and, for the first time, off quasi-free neutrons. The experiment was performed at the electron stretcher accelerator ELSA in Bonn, Germany, with the Crystal Barrel/TAPS detector setup, using a linearly polarized photon beam and a transversely polarized deuterated butanol target. Effects from the Fermi motion of the nucleons within deuterium were removed by a full kinematic reconstruction of the final state invariant mass. A comparison of the data obtained on the proton and on the neutron provides new insight into the isospin structure of the electromagnetic excitation of the nucleon. Earlier measurements of polarization observables in the $\gamma p \rightarrow \pi ^0 p$ and $\gamma p \rightarrow \eta p$ reactions are confirmed. The data obtained on the neutron are of particular relevance for clarifying the origin of the narrow structure in the $\eta n$ system at $W = 1.68\ \textrm{GeV}$. A comparison with recent partial wave analyses favors the interpretation of this structure as arising from interference of the $S_{11}(1535)$ and $S_{11}(1650)$ resonances within the $S_{11}$-partial wave.

4 data tables

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \pi^0 p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma n \to \pi^0 n$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \eta p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.

More…