We present measurements from a spark chamber experiment of the differential cross-sections for p p → π − π + , K − K + at 20 momenta in the range 0.8–2.4 GeV/ c (c.m. energy 2.02 to 2.57 GeV). The c.m. angular range was −0.95 < cos θ ∗ < 0.95 . There are about 2000π − π + events and about 300 K − K + events at each momentum.
ALL ANGLES.
Differential cross sections have been measured for the interactions p p → π − π + and p p → K − K + over a centre of mass angular range −0.95 ⩽ cos θ ∗ ⩽ 0.95 at 20 incident momenta between 0.79 and 2.43 GeV/ c . A magnetic spectrometer with wire spark chambers was used. Typically 2000 π − π + and 300 K − K + events were obtained at each momentum. Results are compared with those from related experiments.
No description provided.
No description provided.
No description provided.
None
proton-beryllium TOTAL cross section ( 278 mb ) was used for normalization.
Proton-beryllium TOTAL (???) cross section ( 278 mb ) was used for normalization.
We have observed diffraction dissociation of KL0 mesons with a carbon target into the exclusive final states KS0π+π−, KS0ω, and KS0φ. The diffraction production cross section for these states is not strongly dependent on the incident energy, varying at most by 30% between 75 and 150 GeV. The mass distributions do not change appreciably as a function of laboratory energy. The ratio of the diffractive mass-threshold production of K*±π∓, KS0ρ, KS0ω, and KS0φ is compared with previously obtained lower-energy data.
TP (=T-TMIN) distribution for K0S PI+ PI- events satisfying the diffractive cuts.
TP distributions for K0S OMEGA and K0S PHI events which satisfy the diffractive cuts.
CROSS SECTIONS PER NUCLEUS.
The reaction γγ→π0η has been investigated with the Crystal Ball detector at the DESY storage ring DORIS II. Formation of δ(980) and A2(1320) has been observed with γγ partial widths Γγγ(A2)=1.14±0.20±0.2 6 keV and Γγγ(δ)B(δ→πη)=0.19±0.07 −0.07+0.10 keV.
No description provided.
No description provided.
A very narrow resonance with a mass of 3.1 GeV/c2 is observed in the reaction n+Be→μ++μ−+X. The total cross section for this process, as well as its P⊥2 and x distribution, are given.
The cross section per nucleon times the branching ratio.
Cross sections for the $\gamma p \to K^+ \Lambda$ have been measured at backward angles using linearly polarized photons in the range 1.50 to 2.37 GeV. In addition, the beam asymmetry for this reaction has been measured for the first time at backward angles. The $\Lambda$ was detected at forward angles in the LEPS spectrometer via its decay to $p\pi^-$ and the K^+ was inferred using the technique of missing mass. These measurements, corresponding to kaons at far backward angles in the center-of-mass frame, complement similar CLAS data at other angles. Comparison with theoretical models shows that the reactions in these kinematics provide further opportunities to investigate the reaction mechanisms of hadron dynamics.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.5 to 1.8 GeV.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.8 to 2.1 GeV.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 2.1 to 2.4 GeV.
The polarization and magnetic moment of the $\Sigma^+$ hyperon have been determined by analyzing 137,300 $\Sigma^+ \to p \pi^0, \pi^0 \to 2 \gamma$ decays. A beam of + inclusively-produced, polarized $\Sigma^+$ hyperons was generated in a Fermilab Meson Lab beamline by 400 GeV protons incident on a beryllium target. The $\Sigma^+$'s were produced at an angle of 5 mrad and ranged in momentum from 140 GeV/c to 350 GeV/c. + 0 The $\Sigma^+ \to p \pi^0, \pi \to 2 \gamma$ decays were detected by a multiwire proportional and drift chamber spectrometer with a lead glass array....
No description provided.
No description provided.
A systematic study of the spectra and yields of K+ and K− is reported by experiment E866 as a function of centrality in Au+Au collisions at 11.6A GeV/c. The invariant transverse spectra for both kaon species are well described by exponentials in mt, with inverse slope parameters that are largest at midrapidity and which increase with centrality. The inverse slopes of the K+ spectra are slightly larger than the inverse slopes of the K− spectra. The kaon rapidity density peaks at midrapidity with the K+ distribution wider in rapidity than K−. The integrated total yields of K+ and K− increase nonlinearly and steadily with the number of projectile participants. The yield per participant for kaons is two to three times larger than the yield from N−N collisions. This enhancement suggests that the majority of kaons in central Au+Au reactions are produced in secondary hadronic collisions. There is no evidence for an onset of additional kaon production from a possible small volume of baryon-rich quark-gluon plasma. The differences between K+ and K− rapidity distributions and transverse spectra are consistent with a lower phase space for K− production due to a higher energy threshold. These differences also exclude simple thermal models that assume emission from a common equilibrated system.
In this case FRAGB=NUCLEAR FRAG + PROTONS.
In this case FRAGB = NUCLEAR FRAG + PROTONS.
The differential cross section for elastic scattering of 3.63−GeVc π− mesons on protons was studied with a hydrogen bubble chamber, the emphasis being on large-angle scattering. From 90 to 180° in the barycentric system, the cross section is roughly flat with an average value of 2.7±1.0 μb/sr. Near and at 180°, there may be a slight peak of magnitude 10±6 μb/sr. But if such a peak exists, it is only one-third to one-fourth the size of the 180° peak found in 4.0 GeVc π++p elastic scattering. In addition to comparison with other π−+p and π++p large-angle elastic-scattering measurements, this measurement is compared with large-angle p+p elastic scattering. In the forward hemisphere a small peak or a plateau exists at cos θ*=+0.60. This appears to be a second diffraction maximum such as has been found in lower-energy π+p elastic scattering. A survey of indications of such a second diffraction maximum in other π+p measurements shows that it always occurs in the vicinity of −t=1.2 (GeVc)2, where t is the square of the four-momentum transfer. As the incident momentum increases, the relative size of this second maximum decreases.
No description provided.
No description provided.