Version 2
Neutral pion production with respect to centrality and reaction plane in Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 87 (2013) 034911, 2013.
Inspire Record 1127262 DOI 10.17182/hepdata.96561

The PHENIX experiment has measured the production of neutral pions in Au+Au collisions at sqrt(s_NN)=200 GeV. The new data offer a fourfold increase in recorded luminosity, providing higher precision and a larger reach in transverse momentum, p_T, to 20 GeV/c. The production ratio of eta/pi^0 is 0.46+/-0.01(stat)+/-0.05(syst), constant with p_T and collision centrality. The observed ratio is consistent with earlier measurements, as well as with the p+p and d+Au values. The production of pi^0 is suppressed by a factor of 5, as in earlier findings. However, with the improved statistical precision a small but significant rise of the nuclear modification factor, R_AA, vs p_T, with a slope of 0.0106+/-^(0.0034)_(0.0029)[GeV/c]^-1, is discernible in central collisions. A phenomenological extraction of the average fractional parton energy loss shows a decrease with increasing p_T. To study the path length dependence of suppression, the pi^0 yield was measured at different angles with respect to the event plane; a strong azimuthal dependence of the pi^0 R_AA is observed. The data are compared to theoretical models of parton energy loss as a function of the path length, L, in the medium. Models based on pQCD are insufficient to describe the data, while a hybrid model utilizing pQCD for the hard interactions and AdS/CFT for the soft interactions is consistent with the data.

20 data tables

Invariant yields of neutral pions, all centralities

Invariant yields of neutral pions, all centralities

$\Eta/ \pi^0 ratios

More…

Direct photon production in d+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 87 (2013) 054907, 2013.
Inspire Record 1126017 DOI 10.17182/hepdata.142660

Direct photons have been measured in sqrt(s_NN)=200 GeV d+Au collisions at midrapidity. A wide p_T range is covered by measurements of nearly-real virtual photons (1<p_T<6 GeV/c) and real photons (5<p_T<16 GeV/c). The invariant yield of the direct photons in d+Au collisions over the scaled p+p cross section is consistent with unity. Theoretical calculations assuming standard cold nuclear matter effects describe the data well for the entire p_T range. This indicates that the large enhancement of direct photons observed in Au+Au collisions for 1.0<p_T<2.5 GeV/c is due to a source other than the initial-state nuclear effects.

10 data tables

Direct photon fraction. The direct-photon fractions from the virtual-photon analysis as a function of $p_{T}$ in $p+p$ (MB) [1] collisions. The values in the table are equal to this mean value. The statistical and systematic uncertainties are shown by the bars and bands, respectively. The curves show expectations from a NLO pQCD calculation [17, 18] with different cutoff mass scales: (solid) $\mu$ = 0.5 $p_{T}$ , (dash) $\mu$ = 1.0 $p_{T}$ , and (dash-dot) $\mu$ = 2.0 $p_{T}$.

Direct photon fraction. The direct-photon fractions from the virtual-photon analysis as a function of $p_{T}$ in $d$+Au (MB) [1] collisions. The values in the table are equal to this mean value. The statistical and systematic uncertainties are shown by the bars and bands, respectively. The curves show expectations from a NLO pQCD calculation [17, 18] with different cutoff mass scales: (solid) $\mu$ = 0.5 $p_{T}$ , (dash) $\mu$ = 1.0 $p_{T}$ , and (dash-dot) $\mu$ = 2.0 $p_{T}$.

Direct photon cross section. (a) The invariant cross sections of the direct photon in $p+p$ [3, 4] and $d$+Au collisions. The $p+p$ fit result with the empirical parameterization described in the text is shown as well as NLO pQCD calculations, and the scaled $p+p$ fit is compared with the $d$+Au data. The closed and open symbols show the results from the virtual photon and $\pi_{0}$-tagging methods, respectively. The asterisk symbols show the result from the statistical subtraction method for $d$+Au data, overlapping with the virtual photon result in 3 < $p_{T}$ < 5 GeV/c. The values in the table are equal to this mean value. The bars and bands represent the point-to-point (ptp.) and $p_{T}$-correlated (cor.) uncertainties, respectively. (b) The $p+p$ data over the fit. The uncertainties of the fit due to both point-to-point (ptp.) and pT -correlated uncertainties of the data are summed quadratically, and the sum is shown as dotted lines. The NLO pQCD calculations divided by the fit are also shown.

More…

Measurement of Direct Photons in Au+Au Collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 109 (2012) 152302, 2012.
Inspire Record 1116179 DOI 10.17182/hepdata.110427

We report the measurement of direct photons at midrapidity in Au+Au collisions at sqrt{s_NN} = 200 GeV. The direct photon signal was extracted for the transverse-momentum range of 4 GeV/c < p_T < 22 GeV/c, using a statistical method to subtract decay photons from the inclusive-photon sample. The direct-photon nuclear-modification factor R_AA was calculated as a function of p_T for different Au+Au collision centralities using the measured p+p direct-photon spectrum and compared to theoretical predictions. R_AA was found to be consistent with unity for all centralities over the entire measured p_T range. Theoretical models that account for modifications of initial-direct-photon production due to modified-parton-distribution functions in Au and the different isospin composition of the nuclei, predict a modest change of R_AA from unity and are consistent with the data. Models with compensating effects of the quark-gluon plasma on high-energy photons, such as suppression of jet-fragmentation photons and induced-photon bremsstrahlung from partons traversing the medium, are also consistent with this measurement.

2 data tables

Direct photon spectra for all centrality selections in Au+Au.

Direct photon nuclear modification factor ($R_{AA}$)


Deviation from quark-number scaling of the anisotropy parameter v_2 of pions, kaons, and protons in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 85 (2012) 064914, 2012.
Inspire Record 1093596 DOI 10.17182/hepdata.141645

Measurements of the anisotropy parameter v_2 of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p_T, and transverse kinetic energy KE_T at midrapidity (|\eta|<0.35) in Au+Au collisions at sqrt(s_NN) = 200 GeV are presented. Pions and protons are identified up to p_T = 6 GeV/c, and kaons up to p_T = 4 GeV/c, by combining information from time-of-flight and aerogel Cherenkov detectors in the PHENIX Experiment. The scaling of v_2 with the number of valence quarks (n_q) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KE_T/n_q in noncentral Au+Au collisions (20--60%), but this scaling remains valid in central collisions (0--10%).

21 data tables

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

More…

Measurements of Higher-Order Flow Harmonics in Au+Au Collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 107 (2011) 252301, 2011.
Inspire Record 900703 DOI 10.17182/hepdata.99679

Flow coefficients v_n for n = 2, 3, 4, characterizing the anisotropic collective flow in Au+Au collisions at sqrt(s_NN) = 200 GeV, are measured relative to event planes Ψ_n determined at large rapidity. We report v_n as a function of transverse momentum and collision centrality, and study the correlations among the event planes of different order n. The v_n are well described by hydrodynamic models which employ a Glauber Monte Carlo initial state geometry with fluctuations, providing additional constraining power on the interplay between initial conditions and the effects of viscosity as the system evolves. This new constraint improves precision of the extracted viscosity to entropy density ratio eta/s.

10 data tables

Charged hadron azimuthal anisotropy $v_2$, $v_3$, and $v_4$ vs $p_T$ in 0-10% central Au+Au collisions at 200 GeV. The mean $<p_T>$ in each $p_T$ bins used for the $v_n$ measurement is shown in Fig.2.6.

Charged hadron azimuthal anisotropy $v_2$, $v_3$, and $v_4$ vs $p_T$ in 10-20% central Au+Au collisions at 200 GeV. The mean $<p_T>$ in each $p_T$ bins used for the $v_n$ measurement is shown in Fig.2.6.

Charged hadron azimuthal anisotropy $v_2$, $v_3$, and $v_4$ vs $p_T$ in 20-30% central Au+Au collisions at 200 GeV. The mean $<p_T>$ in each $p_T$ bins used for the $v_n$ measurement is shown in Fig.2.6.

More…

Production of omega mesons in p+p, d+Au, Cu+Cu, and Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 044902, 2011.
Inspire Record 900308 DOI 10.17182/hepdata.143307

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured omega meson production via leptonic and hadronic decay channels in p+p, d+Au, Cu+Cu, and Au+Au collisions at sqrt(s_NN) = 200 GeV. The invariant transverse momentum spectra measured in different decay modes give consistent results. Measurements in the hadronic decay channel in Cu+Cu and Au+Au collisions show that omega production has a suppression pattern at high transverse momentum, similar to that of pi^0 and eta in central collisions, but no suppression is observed in peripheral collisions. The nuclear modification factors, R_AA, are consistent in Cu+Cu and Au+Au collisions at similar numbers of participant nucleons.

34 data tables

Invariant transverse momentum spectra of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s}$=200 GeV.

Invariant transverse momentum spectra of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s}$=200 GeV.

Invariant transverse momentum spectra of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s}$=200 GeV.

More…

Observation of direct-photon collective flow in sqrt(s_NN)=200 GeV Au+Au collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 109 (2012) 122302, 2012.
Inspire Record 900818 DOI 10.17182/hepdata.144510

The second Fourier component v_2 of the azimuthal anisotropy with respect to the reaction plane was measured for direct photons at midrapidity and transverse momentum (p_T) of 1--13 GeV/c in Au+Au collisions at sqr(s_NN)=200 GeV. Previous measurements of this quantity for hadrons with p_T < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p_T > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p_T > 4 GeV/c the anisotropy for direct photons is consistent with zero, as expected if the dominant source of direct photons is initial hard scattering. However, in the p_T < 4 GeV/c region dominated by thermal photons, we find a substantial direct photon v_2 comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region significantly underpredict the observed v_2.

4 data tables

$v_2$ in minimum bias collisions, using two different reaction plane detectors: (solid black circles) BBC and (solid red squares) RXN for (a) $\pi^0$, (b) inclusive photon, and (c) direct photon.

Centrality dependence of $v_2$ (a, c, e) for (solid-black circles) $\pi^0$, (solid-red squares) inclusive photons, and (b, d, f) (solid-black circles) direct photons measured with the BBC detector for (a),(b) minimum-bias (c),(d) 0%-20% centrality, and (e),(f) 20%-40% centrality.

Centrality dependence of $v_2$ (a, c, e) for (solid-black circles) $\pi^0$, (solid-red squares) inclusive photons, and (b, d, f) (solid-black circles) direct photons measured with the BBC detector for (a),(b) minimum-bias (c),(d) 0%-20% centrality, and (e),(f) 20%-40% centrality.

More…

J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 054912, 2011.
Inspire Record 894560 DOI 10.17182/hepdata.100086

Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.

6 data tables

J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Suppression of away-side jet fragments with respect to the reaction plane in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 024904, 2011.
Inspire Record 872172 DOI 10.17182/hepdata.96510

Pair correlations between large transverse momentum neutral pion triggers (p_T=4--7 GeV/c) and charged hadron partners (p_T=3--7 GeV/c) in central (0--20%) and midcentral (20--60%) Au+Au collisions are presented as a function of trigger orientation with respect to the reaction plane. The particles are at larger momentum than where jet shape modifications have been observed, and the correlations are sensitive to the energy loss of partons traveling through hot dense matter. An out-of-plane trigger particle produces only 26+/-20% of the away-side pairs that are observed opposite of an in-plane trigger particle. In contrast, near-side jet fragments are consistent with no suppression or dependence on trigger orientation with respect to the reaction plane. These observations are qualitatively consistent with a picture of little near-side parton energy loss either due to surface bias or fluctuations and increased away-side parton energy loss due to a long path through the medium. The away-side suppression as a function of reaction-plane angle is shown to be sensitive to both the energy loss mechanism in and the space-time evolution of heavy-ion collisions.

22 data tables

Delta phi / Correlation Function 3-4 GeV/c partners

Delta phi / Correlation Function 3-4 GeV/c partners

$p^{a}_{T} = 3-4$ GeV/$c$

More…

Azimuthal anisotropy of neutral pion production in Au+Au collisions at $\sqrt(s_NN)$ = 200 GeV: Path-length dependence of jet quenching and the role of initial geometry

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 105 (2010) 142301, 2010.
Inspire Record 858845 DOI 10.17182/hepdata.141936

We have measured the azimuthal anisotropy of pi0's for 1 < pT < 18 GeV/c for Au+Au collisions at sqrt s_NN = 200 GeV. The observed anisotropy shows a gradual decrease in 3 < pT < 7 - 10 GeV/c, but remains positive beyond 10 GeV/c. The magnitude of this anisotropy is under-predicted, up to at least 10 GeV/c, by current perturbative QCD (pQCD) energy-loss model calculations. An estimate of the increase in anisotropy expected from initial-geometry modification due to gluon saturation effects and initial-geometry fluctuations is insufficient to account for this discrepancy. Calculations which implement a path length dependence steeper than what is implied by current pQCD energy-loss models, show reasonable agreement with the data.

8 data tables

$\pi^0$ $v_2$ using the reaction plane determined with MPC and RXN$_{in}$ combined as a function of $p_T$ for different centralities.

Ratios of $v_2$ measured separately using MPC and RXN$_{in}$ to combine results.

$v_2$ vs $N_{part}$ in two $p_T$ ranges and $R_{AA}$ vs $N_{part}$ in the same $p_T$ ranges.

More…