The product of the $\Lambda_b^0$ ($\overline{B}^0$) differential production cross-section and the branching fraction of the decay $\Lambda_b^0\rightarrow J/\psi pK^-$ ($\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0$) is measured as a function of the beauty hadron transverse momentum, $p_{\rm T}$, and rapidity, $y$. The kinematic region of the measurements is $p_{\rm T}<20~{\rm GeV}/c$ and $2.0<y<4.5$. The measurements use a data sample corresponding to an integrated luminosity of $3~{\rm fb}^{-1}$ collected by the LHCb detector in $pp$ collisions at centre-of-mass energies $\sqrt{s}=7~{\rm TeV}$ in 2011 and $\sqrt{s}=8~{\rm TeV}$ in 2012. Based on previous LHCb results of the fragmentation fraction ratio, $f_{\Lambda_B^0}/f_d$, the branching fraction of the decay $\Lambda_b^0\rightarrow J/\psi pK^-$ is measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4}, \end{equation*} where the first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the branching fraction of the decay $\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0$, and the fourth is due to the knowledge of $f_{\Lambda_b^0}/f_d$. The sum of the asymmetries in the production and decay between $\Lambda_b^0$ and $\overline{\Lambda}_b^0$ is also measured as a function of $p_{\rm T}$ and $y$. The previously published branching fraction of $\Lambda_b^0\rightarrow J/\psi p\pi^-$, relative to that of $\Lambda_b^0\rightarrow J/\psi pK^-$, is updated. The branching fractions of $\Lambda_b^0\rightarrow P_c^+(\rightarrow J/\psi p)K^-$ are determined.
Products of $\Lambda_b^0$ production cross-sections and the branching fraction $\mathcal{B}(\Lambda_b^0 \rightarrow J\psi pK^-)$ in bins of $p_\rm{T}$ and $y$ in the 2011 data sample.
Products of $\Lambda_b^0$ production cross-sections and the branching fraction $\mathcal{B}(\Lambda_b^0 \rightarrow J\psi pK^-)$ in bins of $p_\rm{T}$ and $y$ in the 2012 data sample.
Products of $\overline{B}^0$ production cross-sections and $\mathcal{B}(\overline{B}^0 \rightarrow J\psi \overline{K}^{*0})$ in bins of $p_\rm{T}$ and $y$ in the 2011 data sample.
The differential branching fraction with respect to the dimuon invariant mass squared, and the $C\!P$ asymmetry of the $B^\pm\to\pi^\pm\mu^+\mu^-$ decay are measured for the first time. The CKM matrix elements $|V_{td}|$ and $|V_{ts}|$, and the ratio $|V_{td}/V_{ts}|$ are determined. The analysis is performed using proton-proton collision data corresponding to an integrated luminosity of 3.0 fb$^{-1}$, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The total branching fraction and $C\!P$ asymmetry of $B^\pm\to\pi^\pm\mu^+\mu^-$ decays are measured to be \begin{eqnarray} \mathcal{B}(B^\pm\to\pi^\pm\mu^+\mu^-) &=& (1.83 \pm 0.24 \pm 0.05) \times 10^{-8}\,\,\,\mathrm{and} \nonumber\\ \mathcal{A}_{C\!P}(B^\pm\to\pi^\pm\mu^+\mu^-) &=& -0.11 \pm 0.12 \pm 0.01\,, \nonumber \end{eqnarray} where the first uncertainties are statistical and the second are systematic. These are the most precise measurements of these observables to date, and they are compatible with the predictions of the Standard Model.
The results for the differential branching fraction for $B^+ \rightarrow \pi^+\mu^+\mu^-$ in bins of $q^2$.
We study the lepton forward-backward asymmetry AFB and the longitudinal K* polarization FL, as well as an observable P2 derived from them, in the rare decays B->K*l+l-, where l+l- is either e+e- or mu+mu-, using the full sample of 471 million BBbar events collected at the Upsilon(4S) resonance with the Babar detector at the PEP-II e+e- collider. We separately fit and report results for the B+->K*+l+l- and B0->K*0l+l- final states, as well as their combination B->K*l+l-, in five disjoint dilepton mass-squared bins. An angular analysis of B+->K*+l+l- decays is presented here for the first time.
$F_L$ angular fit results.
$A_{FB}$ angular fit results.
$P_2$ results with total uncertainties.
In an analysis of a 2.92~fb$^{-1}$ data sample taken at 3.773~GeV with the BESIII detector operated at the BEPCII collider, we measure the absolute decay branching fractions to be $\mathcal B(D^0 \to K^-e^+\nu_e)=(3.505\pm 0.014 \pm 0.033)\%$ and $\mathcal B(D^0 \to \pi^-e^+\nu_e)=(0.295\pm 0.004\pm 0.003)\%$. From a study of the differential decay rates we obtain the products of hadronic form factor and the magnitude of the CKM matrix element $f_{+}^K(0)|V_{cs}|=0.7172\pm0.0025\pm 0.0035$ and $f_{+}^{\pi}(0)|V_{cd}|=0.1435\pm0.0018\pm 0.0009$. Combining these products with the values of $|V_{cs(d)}|$ from the SM constraint fit, we extract the hadronic form factors $f^K_+(0) = 0.7368\pm0.0026\pm 0.0036$ and $f^\pi_+(0) = 0.6372\pm0.0080\pm 0.0044$, and their ratio $f_+^{\pi}(0)/f_+^{K}(0)=0.8649\pm 0.0112\pm 0.0073$. These form factors and their ratio are used to test unquenched Lattice QCD calculations of the form factors and a light cone sum rule (LCSR) calculation of their ratio. The measured value of $f_+^{K(\pi)}(0) |V_{cs(d)}|$ and the lattice QCD value for $f^{K(\pi)}_+(0)$ are used to extract values of the CKM matrix elements of $|V_{cs}|=0.9601 \pm 0.0033 \pm 0.0047 \pm 0.0239$ and $|V_{cd}|=0.2155 \pm 0.0027 \pm 0.0014 \pm 0.0094$, where the third errors are due to the uncertainties in lattice QCD calculations of the form factors. Using the LCSR value for $f_+^\pi(0)/f_+^K(0)$, we determine the ratio $|V_{cd}|/|V_{cs}|=0.238\pm 0.004\pm 0.002\pm 0.011$, where the third error is from the uncertainty in the LCSR normalization. In addition, we measure form factor parameters for three different theoretical models that describe the weak hadronic charged currents for these two semileptonic decays. All of these measurements are the most precise to date.
Summary of the range of each $q^2$ bin, the number of the observed events $N_{\rm observed}$, the number of produced events $N_{\rm produced}$, and the partial decay rate $\Delta\Gamma$ in each $q^2$ bin for $D^0\to K^-e^+\nu_e$ decays.
Summary of the range of each $q^2$ bin, the number of the observed events $N_{\rm observed}$, the number of produced events $N_{\rm produced}$, and the partial decay rate $\Delta\Gamma$ in each $q^2$ bin for $D^0\to \pi^-e^+\nu_e$ decays.
None
No description provided.
Axis error includes +- 0.0/0.0 contribution.
No description provided.
Angular, multiplicity and velocity distributions as well as azimuthai asymmetries of light fragments (Z = 1 and 2) correlated with large transverse momentum protons detected at 90° have been measured in 16O + 27Al collisions at 94 MeV/u. Data are compared with a model based on the standard high-energy fireball geometry coupled with the Weisskopf theory of evaporation. Reasonable agreement is achieved with the exception of some discrepancies which could arise either from the absence of specific intermediate-energy corrections or from a non-statistical process.
No description provided.
No description provided.
The ratio R = σ (e + + p)/ σ (e − + p) of the elastic scattering cross-section detecting the recoil proton at 0 o in coincidence with the backward electron or positron was found to be R = 1.036 ± 0.018 at q 2 = 8 fm −2 , R = 1.079 ± 0.046 at q 2 = 32 fm −2 .
Axis error includes +- 0.0/0.0 contribution (?////Errors presented are the total combined statistical and systematic error s. Radiative corrections applied).
Axis error includes +- 0.0/0.0 contribution (?////Errors presented are the total combined statistical and systematic error s. Radiative corrections applied).
At the projectile-fragment separator FRS of GSI, relativistic secondary beams of about 520 MeV/nucleon were produced by fragmentation of a primary beam of58Ni at 650 MeV/nucleon in a beryllium target. By means of aΔE—Bρ—TOF measurement, the fragments have been identified and their charge-changing probabilities in targets of CH2, C, Al, and Pb have been determined. We describe the results for the total charge-changing cross sections in this first paper, whereas a second article deals with the partial charge-changing cross sections. At the drip line, the measured charge-changing cross sections exhaust close to 100% of the total interaction cross sections as calculated with semiempirical models. The measurements at the proton drip line with low-Z targets indicate that only a very small increase of the cross sections may be observed, whereas the measurements with a lead target show that no significant increase of the total charge-changing cross sections is present which would be a hint for low-lying dipole strength. Our experimental data are compared to Glauber-type calculations.
Nucleus is C H2.
Nucleus is C H2.
Nucleus is C H2.
In Phys. Lett. B 753, 629-638 (2016) [arXiv:1507.08188] the BESIII collaboration published a cross section measurement of the process $e^+e^-\to \pi^+ \pi^-$ in the energy range between 600 and 900 MeV. In this erratum we report a corrected evaluation of the statistical errors in terms of a fully propagated covariance matrix. The correction also yields a reduced statistical uncertainty for the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, which now reads as $a_\mu^{\pi\pi\mathrm{, LO}}(600 - 900\,\mathrm{MeV}) = (368.2 \pm 1.5_{\rm stat} \pm 3.3_{\rm syst})\times 10^{-10}$. The central values of the cross section measurement and of $a_\mu^{\pi\pi\mathrm{, LO}}$, as well as the systematic uncertainties remain unchanged.
Results of the BESIII measurement of the cross section $\sigma^{\rm bare}_{\pi^+\pi^-(\gamma_{\rm FSR})} \equiv \sigma^{\rm bare}(e^+e^-\rightarrow\pi^+\pi^-(\gamma_{\rm FSR}))$ and the squared pion form factor $|F_\pi|^2$. The errors are statistical only. The value of $\sqrt{s'}$ represents the bin center. The 0.9$\%$ systematic uncertainty is fully correlated between any two bins.
Results for the bare cross section $\sigma^\text{bare}_{\pi^+\pi^-}$ and the pion form factor together with their statistical uncertainties. The systematical uncertainties are given by 0.9% (see <a href="https://inspirehep.net/literature/1385603">arXiv:1507.08188</a>).
Bare cross section $\sigma^\mathrm{bare}(e^+e^-\to\pi^+\pi^-(\gamma_\mathrm{FSR}))$ of the process $e^+e^-\to\pi^+\pi^-$ measured using the initial state radiation method. The data is corrected concerning final state radiation and vacuum polarization effects. The final state radiation is added using the Schwinger term at born level.
We have investigated the particle production and fragmentation of nuclei participating in the interactions of 10.6 GeV/n gold nuclei in nuclear emulsions. A new criterion has been found to distinguish between the interactions of these gold nuclei with the light (H,C,N,O) and heavy (Ag, Br) target nuclei in the emulsion. This has allowed separate analyses of the multiplicity and pseudo-rapidity distributions of the singly charged particles emitted in Au-(H,C,N,O) and Au-(Ag,Br) interactions, as well as of the modes of breakup of the projectile and target nuclei. The pseudo-rapidity distributions show strong forward asymmetries, particularly for the interactions with the light nuclei. Heavy target nuclei produce a more severe breakup of the projectile gold nucleus than do the lighter targets. A negative correlation between the number of fragments emitted from the target nuclei and the degree of centrality of the collisions has been observed, which can be attributed to the total destruction of the relatively light target nuclei by these very heavy projectile nuclei.
No description provided.
No description provided.
No description provided.