Date

Measurement of the average b baryon lifetime and the product branching ratio f (b --> Lambda(b)) x BR (Lambda(b) --> Lambda lepton- anti-neutrino X)

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 69 (1996) 195-214, 1996.
Inspire Record 397395 DOI 10.17182/hepdata.51966

None

1 data table

Charged conjugate state is assumed.


A Study of cascade and strange baryon production in sulphur - sulphur interactions at 200-GeV/c per nucleon

The OMEGA-IONS collaboration Abatzis, S. ; Andersen, E. ; Andrighetto, A. ; et al.
Phys.Lett.B 354 (1995) 178-182, 1995.
Inspire Record 395028 DOI 10.17182/hepdata.47883

Strange and multistrange baryon and antibaryon production has been studied in sulphur sulphur interactions at 200 GeV/ c per nucleon at central rapidity using the CERN Omega Spectrometer. Particle production ratios and transverse mass spectra are presented for Λ, Ξ − , Λ and Ξ − .

8 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the e+ and e- induced charged current cross-sections at HERA

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Z.Phys.C 67 (1995) 565-576, 1995.
Inspire Record 395960 DOI 10.17182/hepdata.44972

The cross sections for the charged current processes ${e~{-}p}\rightarrow{\nu_e+hadrons}$ and, for the first time, ${e~{+}p}\rightarrow{\overline{\nu}_e+hadrons}$ are measured at HERA for transverse momenta larger than 25 GeV.

2 data tables

No description provided.

No description provided.


Measurement of the diffractive structure function in deep elastic scattering at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 68 (1995) 569-584, 1995.
Inspire Record 395199 DOI 10.17182/hepdata.44902

This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in $ep$ interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of $\xpom$, the momentum fraction lost by the proton, of $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and of $Q~2$. The $\xpom$ dependence is consistent with the form \xpoma where $a=1.30\pm0.08(stat)~{+0.08}_{-0.14}(sys)$ in all bins of $\beta$ and $Q~2$. In the measured $Q~2$ range, the diffractive structure function approximately scales with $Q~2$ at fixed $\beta$. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.

11 data tables

No description provided.

No description provided.

No description provided.

More…

A Direct determination of the gluon density in the proton at low x

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 449 (1995) 3-21, 1995.
Inspire Record 395643 DOI 10.17182/hepdata.44979

A leading order determination of the gluon density in the proton has been performed in the fractional momentum range $1.9 \cdot 10~{-3} < x_{g/p} < 0.18$ by measuring multi-jet events from boson-gluon fusion in deep-inelastic scattering with the H1 detector at the electron-proton collider HERA. This direct determination of the gluon density was performed in a kinematic region previously not accessible. The data show a considerable increase of the gluon density with decreasing fractional momenta of the gluons.

1 data table

FG is gluon structure function. XPARTON here means the X of the gluon. For the experimental definitions of the XPARTON see paper.


The Gluon density of the proton at low x from a QCD analysis of F2

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 354 (1995) 494-505, 1995.
Inspire Record 395814 DOI 10.17182/hepdata.44945

We present a QCD analysis of the proton structure function $F_2$ measured by the H1 experiment at HERA, combined with data from previous fixed target experiments. The gluon density is extracted from the scaling violations of $F_2$ in the range $2\cdot 10~{-4}<x<3\cdot 10~{-2}$ and compared with an approximate solution of the QCD evolution equations. The gluon density is found to rise steeply with decreasing $x$.

3 data tables

No description provided.

No description provided.

No description provided.


W and Z boson production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 1456-1461, 1995.
Inspire Record 395459 DOI 10.17182/hepdata.42368

The inclusive cross sections times leptonic branching ratios for W and Z boson production in PbarP collisions at Sqrt(s)=1.8 TeV were measured using the D0 detector at the Fermilab Tevatron collider: Sigma_W*B(W->e, nu) = 2.36 +/- 0.07 +/- 0.13 nb, Sigma_W*B(W->mu,nu) = 2.09 +/- 0.23 +/- 0.11 nb, Sigma_Z*B(Z-> e, e) = 0.218 +/- 0.011 +/- 0.012 nb, Sigma_Z*B(Z->mu,mu) = 0.178 +/- 0.030 +/- 0.009 nb. The first error is the combined statistical and systematic uncertainty, and the second reflects the uncertainty in the luminosity. For the combined electron and muon analyses we find: [Sigma_W*B(W->l,nu)]/[Sigma_Z*B(Z->l,l)] = 10.90 +/- 0.49. Assuming Standard Model couplings, this result is used to determine the width of the W boson: Gamma(W) = 2.044 +/- 0.093 GeV.

1 data table

The second DSYS error is due to luminosity.


Search for the decay D0 ---> mu+ mu-

The BEATRICE collaboration Adamovich, M. ; Adinolfi, M. ; Alexandrov, Y. ; et al.
Phys.Lett.B 353 (1995) 563-570, 1995.
Inspire Record 396802 DOI 10.17182/hepdata.47863

We have searched for the decay D 0 → μ + μ − among 1.25 × 10 5 μ + μ − pairs produced by 350 GeV/ c π − particles interacting in copper and tungsten targets. Using a high-resolution silicon-microstrip detector followed by a large-acceptance magnetic spectrometer and a muon filter we are able to discriminate between prompt and non-prompt muons and to measure dimuon masses. No candidate compatible with a D 0 → μ + μ − decay has been found, allowing us to set an upper limit on the branching fraction B( D 0 → μ + μ − ) of 7.6 × 10 −6 at the 90% confidence level.

1 data table

NUCLEUS OF TARGET=CU+WT.


A Measurement of J / psi decay widths

The BES collaboration Bai, J.Z. ; Chen, G.P. ; Chen, H.F. ; et al.
Phys.Lett.B 355 (1995) 374-380, 1995.
Inspire Record 39870 DOI 10.17182/hepdata.28500

The cross sections for e + e − → hadrons, e + e − , μ + μ − have been measured in the vicinity of the J Ψ resonance using the BES detector operated at BEPC. The partial widths for J Ψ to hadrons, electrons, muons and the total width have been determined to be Γ h = 74.1 ± 8.1 keV, Γ e = 5.14 ± 0.39 keV, Γ μ = 5.13 ± 0.52 keV, and Γ = 84.4 ± 8.9 keV, respectively.

1 data table

No description provided.


A Model independent measurement of quark and gluon jet properties and differences

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 68 (1995) 179-202, 1995.
Inspire Record 396179 DOI 10.17182/hepdata.47862

None

3 data tables

THETA is the angle between hadron and jet's axis. CONST is the parameter used in jet's definition (see text).

CONST is the parameter used in jet's definition (see text).

CONST is the parameter used in jet's definition (see text).