Two photon final states in e + e − annihilation have been analyzed at CM energies around 34 GeV. Good agreement with QED is observed. Lower limits for the QED cutoff parameters of Λ + > 59 GeV and Λ - > 44 GeV are determined. A search for two photons with missing energy yields an upper limit for the production of neutral particles which decay into a photon and a non-interacting particle. Constraints on the mass and the coupling strength of supersymmetric photinos are discussed.
Cross section for ABS(cos(theta)) <0.85.
No description provided.
Results on charged particle production in pp̄ collision at s 1 2 = 540 GeV are presented. The data were obtained at the CERN pp̄ collider using the UA1 detector, operated without magnetic field. The central particle density is 3.3 + - 0.2 per unit o pseudo-rapidity for non-diffractive events. KNO scaling of the multiplicity distributions withresults from ISR energies is observed.
Pseudorapidity density distribution for all charged multiplicities corrected for acceptance and backgrounds by excluding NSD events. Data have been read from the plot.
.
.
About 2000 neutral induced interactions observed inside the hydrogen filled TST in BEBC have been analysed. The data were obtained from an exposure to the v μ wide band beam at the CERN SPS. A separation of these events into charged current, neutral current and neutral hadron induced interactions have been achieved using a multidimensional kinematic analysis. The neutral to charged current cross section ratio for v μ interactions on free protons has been determined avoiding the drastic cuts on the data inherent in previous experiments. The result R P v = 0.47 ± 0.04 is compatible with those measurements and the prediction of the standard SU (2) × U (1) model for sin 2 θ W = 0.18 ± 0.04.
No description provided.
Inclusive charged-current interactions of high-energy neutrinos and antineutrinos have been studied with high statistics in a counter experiment at the CERN Super Proton Synchrotron. The energy dependence of the total cross-sections, the longitudinal structure function, and the nucleon structure functionsF2,xF3, and\(\bar q^{\bar v} \) are determined from these data. The analysis of theQ2-dependence of the structure functions is used to test quantum chromodynamics, to determine the scale parameter Λ and the gluon distribution in the nucleon.
ABSOLUTE FLUXES HAVE NOT BEEN MEASURED. NORMALISED TO OLD RESULTS.
STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.
STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.
Differential cross sections for π − p and pp elastic scattering have been measured at incident momenta ranging from 30 to 345 GeV and in the t range 0.002 (GeV/ c ) 2 ⩽ | t | ⩽ 0.04 (GeV/ c ) 2 . From the analysis of the data, the ratio ϱ ( t = 0) of the real to the imaginary parts of the forward scattering amplitude was determined together with the logarithmic slope b of the diffraction cone.
No description provided.
No description provided.
No description provided.
With a PETRA energy scan in ≤30-MeV steps, the continuum production of open top quark up to 38.54 GeV is excluded. Over regions of energy scan from 29.90 to 38.63 GeV limits are set on the product of hadronic branching ratio and electronic width BhΓee for toponium to be less than 2.0 keV at the 95% confidence level. By a search for flavor-changing neutral currents in b decay, models without a top quark are excluded.
MEASUREMENT OF R IN ENERGY SCAN FROM SQRT(S) = 29.9 TO 3.146 AND 33.0 TO 36.72.
MEASUREMENT OF R IN THE RANGE SQRT(S) 37 TO 38.63 GEV.
THRUST DISTRIBUTION FOR EVENTS IN THE RANGE SQRT(S) 37.94 TO 38.63 AND 38.54 TO 38.63.
Proton-antiproton and proton-proton elastic scattering have been measured in the four-momentum transfer range 0.001⩽| t |⩽0.06 GeV 2 for center-of-mass energy 52.8 GeV at the CERN Intersecting Storage Rings (ISR). Using the known pp total cross section, a simultaneous fit to the pp̄ and pp differential cross sections yields the pp̄ total cross section; in addition, we obtain the ratio of the real-to-imaginary part of the forward nuclear-scattering amplitude and the nuclear-slope parameter for both pp̄ and pp. Our results show conclusively that the pp̄ total cross section is rising at ISR energies and lend support to conventional theories in which the difference between the pp̄ and pp total cross section vanishes at very high energy.
No description provided.
RESULTS OF FIT.
No description provided.
None
1.0 cm WT target.
1.0 cm C target.
1.0 cm CU target.
A description is given of an experiment to study elastic scattering of π ± , K ± and p on protons at c.m. scattering angles from 45° to 100° at incident laboratory momenta 20 GeV/ c and 30 GeV/ c . The corresponding t range is from −6.2 (GeV/ c ) 2 to −28 (GeV/ c ) 2 . There are no previous observations for these reactions in this t range. High intensity and large geometrical acceptance were required in order to measure the low cross sections. The experiment used a double-arm spectrometer. MWPCs were used for reconstruction, and threshold and differential Čerenkov counters for identification. Scintillation counters, Čerenkov counters and a hadron calorimeter were used in the trigger. The trigger logic utilized specially designed matrices and a hard wired microprocessor. The π − p elastic scattering cross sections follow approximately the dimensional counting rule from 3.5 GeV/ c .and up to 30 GeV/ c . The cross sections decrease by seven orders of magnitude in this energy range. The data is compared to quark models. None of these models give a comprehensive description of the results. However, some modifications to these models improve their consistency with the data.
EARLIER RESULTS GIVEN IN 'A'.
No description provided.
No description provided.
Differential cross sections fore+e−→e+e−, τ+, τ- measured with the CELLO detector at\(\left\langle {\sqrt s } \right\rangle= 34.2GeV\) have been analyzed for electroweak contributions. Vector and axial vector coupling constants were obtained in a simultaneous fit to the three differential cross sections assuming a universal weak interaction for the charged leptons. The results,v2=−0.12±0.33 anda2=1.22±0.47, are in good agreement with predictions from the standardSU(2)×U(1) model for\(\sin ^2 \theta _w= 0.228\). Combining this result with neutrino-electron scattering data gives a unique axial vector dominated solution for the leptonic weak couplings. Assuming the validity of the standard model, a value of\(\sin ^2 \theta _w= 0.21_{ - 0.09}^{ + 0.14}\) is obtained for the electroweak mixing angle. Additional vector currents are not observed (C<0.031 is obtained at the 95% C.L.).
No description provided.
Combined MU and TAU asymmetry. See PL 114B(1982)282 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1234> RED = 1234 </a>) and ZP C14(1982)283 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1245> RED = 1245 </a>) for individual asymmetry measurements.