Large angle pi- proton elastic scattering at 14 and 23 gev/c

Cornillon, P. ; Grindhammer, Guenter ; Klems, J.H. ; et al.
Phys.Rev.Lett. 30 (1973) 403-406, 1973.
Inspire Record 84550 DOI 10.17182/hepdata.21401

The differential cross section for π−−p elastic scattering has been measured at 13.8 and 22.6 GeV/c up to −t=5 (GeV/c)2. The dips in the angular distribution at −t≈0.8 and 2.8 (GeV/c)2 previously observed at lower momenta become less prominent at higher momentum. The −t=2.8 (GeV/c)2 dip is still observed at 13.8 GeV/c, but at 22.6 GeV/c it has become a sharp kink in the angular distribution. At large momentum transfers, dσdt at fixed t is still decreasing with increasing s, but at a slower rate in the 14- to 23-GeV/c region than at lower momenta.

2 data tables

No description provided.

No description provided.


Large t Elastic Proton Proton Scattering at s**(1/2) = 53-GeV

de Kerret, H. ; Nagy, E. ; Regler, M. ; et al.
Phys.Lett.B 62 (1976) 363-365, 1976.
Inspire Record 108743 DOI 10.17182/hepdata.27660

New experimental results are presented on proton-proton elastic scattering in the range of momentum transfer 0.8GeV 2 < − t < 9 GeV 2 at a centre-of-mass energy of √ s = 53 GeV. The data are obtained sing the Split-Field- Magnet Detector at the CERN Intersecting Storage Rings. The cross section has well-known minimum at − t = (1.34±0.02) GeV 2 but no further minimum or change of slope is observed between 2 and 6.5 GeV 2 .

1 data table

Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED ERRORS ARE THE QUADRATIC SUM OF STATISTICAL AND ESTIMATED SYSTEMATIC ERRORS. THE SYSTEMATIC ERRORS ARE NOT INDEPENDENT FROM BIN TO BIN).


Large-Angle Pion-Proton Elastic Scattering at High Energies

Orear, J. ; Rubinstein, R. ; Scarl, D.B. ; et al.
Phys.Rev. 152 (1966) 1162-1170, 1966.
Inspire Record 50774 DOI 10.17182/hepdata.407

Differential cross sections for elastic π±−p scattering have been measured at lab momenta of 8 and 12 GeV/c in a momentum-transfer region corresponding to 1.2≤−t≤6 (GeV/c)2. Also, differential cross sections near 180° were measured for 4 and 8 GeV/c pions. At momentum transfers greater than −t=2 (GeV/c)2, the π−p cross sections drop much faster with increasing angle than the corresponding p−p cross sections. Also, in the region −t≃1.3 (GeV/c)2, there is structure in the π−p angular distribution but not in the p−p angular distribution. At −t≃3 (GeV/c)2, the drop in cross section appears to stop and from then on the angular distribution is consistent with isotropy. But in the angular region 170° to 180°, the cross sections have become much larger, and sharp backward peaks are observed. Information is given on the energy and charge dependences and widths of these backward peaks.

22 data tables

'1'. '2'.

'1'. '2'.

No description provided.

More…

Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

The HARP collaboration Catanesi, M.G. ; Edgecock, R. ; Ellis, Malcolm ; et al.
Eur.Phys.J.C 53 (2008) 177-204, 2008.
Inspire Record 761546 DOI 10.17182/hepdata.51401

A measurement of the double-differential $\pi^{\pm}$ production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum $100 \MeVc \leq p &lt; 800 \MeVc$ and angle $0.35 \rad \le \theta &lt;2.15 \rad$ is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc).

54 data tables

Double-differential cross section for PI+ production from C in the LAB system for PI+ polar angle from 0.35 to 0.55 radians.

Double-differential cross section for PI+ production from C in the LAB system for PI+ polar angle from 0.55 to 0.75 radians.

Double-differential cross section for PI+ production from C in the LAB system for PI+ polar angle from 0.75 to 0.95 radians.

More…

Large-angle production of charged pions by 3 GeV/c - 12.9 GeV/c protons on beryllium, aluminium and lead targets

The HARP collaboration Catanesi, M.G. ; Radicioni, E. ; Edgecock, R. ; et al.
Eur.Phys.J.C 54 (2008) 37-60, 2008.
Inspire Record 761543 DOI 10.17182/hepdata.51357

Measurements of the double-differential $\pi^{\pm}$ production cross-section in the range of momentum $100 \MeVc \leq p &lt; 800 \MeVc$ and angle $0.35 \rad \leq \theta &lt; 2.15 \rad$ in proton--beryllium, proton--aluminium and proton--lead collisions are presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12.9 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections at six incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc, 8.9 \GeVc (Be only), 12 \GeVc and 12.9 \GeVc (Al only)) and compared to previously available data.

54 data tables

Double-differential cross section for PI+ production from BE in the LAB system for PI+ polar angle from 0.35 to 0.55 radians.

Double-differential cross section for PI+ production from BE in the LAB system for PI+ polar angle from 0.55 to 0.75 radians.

Double-differential cross section for PI+ production from BE in the LAB system for PI+ polar angle from 0.75 to 0.95 radians.

More…

Large-angle production of charged pions with 3-12.9 GeV/c incident protons on nuclear targets

The HARP collaboration Catanesi, M.G. ; Radicioni, E. ; Edgecock, R. ; et al.
Phys.Rev.C 77 (2008) 055207, 2008.
Inspire Record 786183 DOI 10.17182/hepdata.13425

Measurements of the double-differential charged pion production cross-section in the range of momentum 100 MeV/c &lt; p &lt; 800 MeV/c and angle 0.35 &lt; \theta &lt; 2.15 rad in proton-beryllium, proton-carbon, proton-aluminium, proton-copper, proton-tin, proton-tantalum and proton-lead collisions are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a target with a thickness of 5% of a nuclear interaction length.

37 data tables

Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 0.35 to 0.55 radians.

Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 0.55 to 0.75 radians.

Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 0.75 to 0.95 radians.

More…

Large-angle production of charged pions with incident pion beams on nuclear targets

The HARP collaboration Apollonio, M. ; Artamonov, A. ; Bagulya, A. ; et al.
Phys.Rev.C 80 (2009) 065207, 2009.
Inspire Record 825244 DOI 10.17182/hepdata.50467

Measurements of the double-differential pi+/- production cross-section in the range of momentum 100 MeV/c <= p <= 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad using pi+/- beams incident on beryllium, aluminium, carbon, copper, tin, tantalum and lead targets are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections d2sigma/dpdtheta at six incident beam momenta. Data at 3 GeV/c, 5 GeV/c, 8 GeV/c, and 12 GeV/c are available for all targets while additional data at 8.9 GeV/c and 12.9 GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.

252 data tables

No description provided.

No description provided.

No description provided.

More…

Leading neutron energy and p(T) distributions in deep inelastic scattering and photoproduction at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 776 (2007) 1-37, 2007.
Inspire Record 744787 DOI 10.17182/hepdata.45630

The production of energetic neutrons in $ep$ collisions has been studied with the ZEUS detector at HERA. The neutron energy and $p_T^2$ distributions were measured with a forward neutron calorimeter and tracker in a $40 \pb^{-1}$ sample of inclusive deep inelastic scattering (DIS) data and a $6 \pb^{-1}$ sample of photoproduction data. The neutron yield in photoproduction is suppressed relative to DIS for the lower neutron energies and the neutrons have a steeper $p_T^2$ distribution, consistent with the expectation from absorption models. The distributions are compared to HERA measurements of leading protons. The neutron energy and transverse-momentum distributions in DIS are compared to Monte Carlo simulations and to the predictions of particle exchange models. Models of pion exchange incorporating absorption and additional secondary meson exchanges give a good description of the data.

35 data tables

Ratio of leading neutron to inclusive cross sections integrated to the full PT range.

Normalized double differential cross sections for leading neutron production for the full DIS sample. Statistical errors only are given.

Normalized double differential cross sections for leading neutron production for the full DIS sample. Statistical errors only are given.

More…

Leading neutron production in e+ p collisions at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Nucl.Phys.B 637 (2002) 3-56, 2002.
Inspire Record 587158 DOI 10.17182/hepdata.46613

The production of neutrons carrying at least 20% of the proton beam energy ($\xl > 0.2$) in $e^+p$ collisions has been studied with the ZEUS detector at HERA for a wide range of $Q^2$, the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, $e p\to e' X n$, is measured relative to the inclusive cross section, $e p\to e' X$, thereby reducing the systematic uncertainties. For $\xl >$ 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the $\gamma p$ system. For $0.64 < \xl < 0.82$, the rate of neutrons is almost independent of the Bjorken scaling variable $x$ and $Q^2$. However, at lower and higher $\xl$ values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, ${{F}^{\rm\tiny LN(3)}_2}(x,Q^2,\xl)$, rises at low values of $x$ in a way similar to that of the inclusive \ff of the proton. The total $\gamma \pi$ cross section and the structure function of the pion, $F^{\pi}_2(x_\pi,Q^2)$ where $x_\pi = x/(1-\xl)$, have been determined using a one-pion-exchange model, up to uncertainties in the normalisation due to the poorly understood pion flux. At fixed $Q^2$, $F^{\pi}_2$ has approximately the same $x$ dependence as $F_2$ of the proton.

18 data tables

The XL bins, their acceptance and the acceptance uncertainty. The RH columnshows the contribution from the energy-scale uncertainty - this is completely c orrelated between the bins.

The slope of the PT**2 distribution from the 1995 DIS data. The uncertainties shown in this table were communicated to us by the authors, and supercede those given in the paper.

The normalized cross section (1/SIG)DSIG/dXL for leading neutrons with THETA < 0.8 mrad with statistical errors only.. For the lowest Q**2 data, the normalization uncertainty is +-5 PCT, and with XL > 0.52 there is a further normalization uncertainty of +-4 PCT.. For the intermediate Q**2 and DIS data the normalization uncertainty is +-4 PCT.

More…

Leading proton production in deep inelastic scattering at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
JHEP 06 (2009) 074, 2009.
Inspire Record 805171 DOI 10.17182/hepdata.53754

The semi-inclusive reaction e+ p -> e+ X p was studied with the ZEUS detector at HERA using an integrated luminosity of 12.8 pb-1. The final-state proton, which was detected with the ZEUS leading proton spectrometer, carried a large fraction of the incoming proton energy, xL>0.32, and its transverse momentum squared satisfied pT^2<0.5 GeV^2/ the exchanged photon virtuality, Q^2, was greater than 3 GeV^2 and the range of the masses of the photon-proton system was 45<W<225 GeV. The leading proton production cross section and rates are presented as a function of xL, pT^2, Q^2 and the Bjorken scaling variable, x.

171 data tables

Double differential cross sections as a funtion of PT**2 for the XL range 0.32 TO 0.38. The methods S123 and S456 are the results using different stations of the silicon microstrip detectors.

Double differential cross sections as a funtion of PT**2 for the XL range 0.38 TO 0.44. The methods S123 and S456 are the results using different stations of the silicon microstrip detectors.

Double differential cross sections as a funtion of PT**2 for the XL range 0.44 TO 0.50. The methods S123 and S456 are the results using different stations of the silicon microstrip detectors.

More…