Date

Measurements of the electric and magnetic form-factors of the proton from Q**2 = 1.75-GeV/c**2 to 8.83-GeV/c**2

Bosted, Peter E. ; Clogher, L. ; Lung, A. ; et al.
Phys.Rev.Lett. 68 (1992) 3841-3844, 1992.
Inspire Record 332962 DOI 10.17182/hepdata.19849

The proton elastic electric and magnetic form factors, GEp(Q2) and GMp(Q2), have been separately measured in the range Q2=1.75 to 8.83 (GeV/c)2, more than doubling the Q2 range of previous data. Scaled by the dipole fit, GD(Q2), the results for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.91, while GEp(Q2)/GD(Q2) is consistent with unity. Comparisons are made to QCD sum rule, diquark, constitutent quark, and vector meson dominance models, none of which agree with all of the new data. The ratio Q2F2/F1 approaches a constant value for Q2>3 (GeV/c)2.

2 data tables match query

Magnetic form factors.

Electric form factors.


Tests of QCD factorisation in the diffractive production of dijets in deep-inelastic scattering and photoproduction at HERA

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 51 (2007) 549-568, 2007.
Inspire Record 746380 DOI 10.17182/hepdata.45555

Measurements are presented of differential dijet cross sections in diffractive photoproduction (Q^2<0.01 GeV^2) and deep-inelastic scattering processes (DIS, 4<Q^2<80 GeV^2). The event topology is given by ep-> e X Y, in which the system X, containing at least two jets, is separated from a leading low-mass proton remnant system Y by a large rapidity gap. The dijet cross sections are compared with NLO QCD predictions based on diffractive parton densities previously obtained from a QCD analysis of inclusive diffractive DIS cross sections by H1. In DIS, the dijet data are well described, supporting the validity of QCD factorisation. The diffractive DIS dijet data are more sensitive to the diffractive gluon density at high fractional parton momentum than the measurements of inclusive diffractive DIS. In photoproduction, the predicted dijet cross section has to be multiplied by a factor of approximately 0.5 for both direct and resolved photon interactions to describe the measurements. The ratio of measured dijet cross section to NLO prediction in photoproduction is a factor 0.5+-0.1 smaller than the same ratio in DIS. This suppression is the first clear observation of QCD hard scattering factorisation breaking at HERA. The measurements are also compared to the two soft colour neutralisation models SCI and GAL. The SCI model describes diffractive dijet production in DIS but not in photoproduction. The GAL model fails in both kinematic regions.

15 data tables match query

Differential cross section for DIS events as a function of Z_Pomeron.

Differential cross section for DIS events as a function of LOG10(X_Pomeron).

Differential cross section for DIS events as a function of W.

More…

$\pi^- p$ Interactions at 360-GeV/c: Measurement of the Total and Elastic Cross-Sections and the Charged Particle Multiplicity Distribution

Firestone, A. ; Anderson, E.W. ; Chang, V. ; et al.
Phys.Rev.D 14 (1976) 2902, 1976.
Inspire Record 3926 DOI 10.17182/hepdata.24670

In a sample of 108 563 pictures taken with the Fermilab 30-inch hydrogen bubble chamber, exposed to a 360-GeV/c π− beam, we have observed 19 453 interactions in a selected fiducial region. The observed charged multiplicity distribution has been corrected for the effects of scan efficiency, errors in prong count, missed close-in vees, secondary interactions, and neutron stars and for Dalitz pairs. The two-prong events have been corrected for losses at low −t. The total cross section is measured to be 25.25 ± 0.35 mb, and the elastic cross section is 3.61 ± 0.11 mb with an exponential slope of (8.82 ± 0.30) (GeV/c)−2. The average charged-particle multiplicity for inelastic events is 8.73 ± 0.04, and the second moment f2 is measured to be 9.83 ± 0.23.

2 data tables match query

SYSTEMATIC CORRECTIONS INCLUDED IN ERRORS.

FROM FIT, FORWARD D(SIG)/DT = 31.84 +- 0.68 MB/GEV**2, AND AGREES WITH OPTICAL POINT FROM MEASURED TOTAL CROSS SECTIONS.


Polarization Parameter in p-p Scattering from 1.7 to 6.1 BeV

Grannis, P. ; Arens, J. ; Betz, F. ; et al.
Phys.Rev. 148 (1966) 1297-1302, 1966.
Inspire Record 50914 DOI 10.17182/hepdata.26642

The polarization parameter in proton-proton scattering has been measured at incident proton kinetic energies of 1.7, 2.85, 3.5, 4.0, 5.05, and 6.15 BeV and for four-momentum transfer squared between 0.1 and 1.0 (BeV/c)2. The experiment was done with an unpolarized proton beam from the Bevatron striking a polarized proton target. Both final-state protons were detected in coincidence and the asymmetry in counting rate for target protons polarized parallel and antiparallel to the scattering normal was measured. The maximum polarization was observed to decrease from 0.4 at 1.7 BeV to 0.2 at 6.1 BeV. The maximum of the polarization at all energies studied occurs at a four-momentum transfer squared of 0.3 to 0.4 (BeV/c)2.

6 data tables match query
More…

Proton-proton spin correlation measurements at 200 MeV with an internal target in a storage ring

Haeberli, W. ; Lorentz, B. ; Rathmann, F. ; et al.
Phys.Rev.C 55 (1997) 597-613, 1997.
Inspire Record 464240 DOI 10.17182/hepdata.25711

Measurements of the pp spin correlation coefficients Axx, Ayy, and Axz and analyzing power Ay for pp elastic scattering at 197.8 MeV over the angular range 4.5°–17.5° have been carried out. The statistical accuracy is approximately ±0.01 for Amn and ±0.004 for Ay, while the corresponding scale factor uncertainties are 2.4% and 1.3%, respectively. The experiment makes use of a polarized hydrogen gas target internal to a proton storage ring (IUCF Cooler) and a circulating beam of polarized protons. The target polarization (Q=0.79) is switched in sign and in direction (x,y,z) every 2 s by reversing a weak guide field (about 0.3 mT). The forward-scattered protons are detected in two sets of wire chambers and a scintillator, while recoil protons are detected in coincidence with the forward protons by silicon strip detectors placed 5 cm from the proton beam. The background rate from scattering by the walls of the target cell is (0.2±0.2)% of the good event rate. Analysis methods and comparisons with pp potential models and pp partial wave analyses are described.

1 data table match query

No description provided.


Analyzing powers for pi+- p(pol.) elastic scattering between 87-MeV and 263-MeV.

Hofman, G.J. ; Smith, G.R. ; Ambardar, T. ; et al.
Phys.Rev.C 58 (1998) 3484-3493, 1998.
Inspire Record 483008 DOI 10.17182/hepdata.25722

Analyzing powers for πp elastic scattering were measured using the CHAOS spectrometer at energies spanning the Δ(1232) resonance. This work presents π+ data at the pion kinetic energies 117, 130, 139, 155, 169, 180, 193, 218, 241, and 267 MeV and π− data at 87, 117, 193, and 241 MeV, covering an angular range of 50°<~θc.m.<~180° at the higher energies and 90°<~θc.m.<~180° at the lower energies. Unique features of the spectrometer acceptance were employed to reduce systematic errors. Single-energy phase shift analyses indicate the resulting S11 and S31 phases favor the results of the SM95 phase shift analysis over that of the older KH80 analysis.

18 data tables match query

Measurement of the PI+ analysing power at 117 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.

Measurement of the PI+ analysing power at 139 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.

Measurement of the PI- analysing power at 87 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.

More…

Absolute measurement of the p+p analyzing power at 183 MeV

von Przewoski, B. ; Meyer, H.O. ; Pancella, P.V. ; et al.
Phys.Rev.C 44 (1991) 44-49, 1991.
Inspire Record 327386 DOI 10.17182/hepdata.26154

The analyzing power Ay for p+p elastic scattering at θlab=8.64°±0.07° (θcms=18.1°) and at a bombarding energy of 183.1±0.4 MeV has been determined to be Ay=0.2122±0.0017. The error includes statistics, systematic uncertainties, and the uncertainty in bombarding energy and angle. This measurement represents a calibration standard for polarized beams in this energy range. The absolute scale for the measurement has been obtained by comparison with p+C elastic scattering at the same energy at an angle where Ay is very nearly unity.

1 data table match query

Axis error includes +- 0.0/0.0 contribution (?////).


Measurement and Phase Shift Analysis of the p Parameter in pi+ p Scattering at 236-MeV

Amsler, Claude ; Rudolf, F. ; Weymuth, P. ; et al.
Phys.Lett.B 57 (1975) 289-292, 1975.
Inspire Record 103210 DOI 10.17182/hepdata.27848

The P parameter for π + p scattering at 236.3 MeV has been measured between 50° and 146° c.m. with very low background using a butanol polarized proton target. The resulting D phases are in fair agreement with dispersion relation values.

1 data table match query

No description provided.


Measurement of the p Parameter in pi+ p Scattering in the Energy Region of the P33 Resonance

Amsler, Claude ; Dubal, L. ; Eaton, G.H. ; et al.
Lett.Nuovo Cim. 15 (1976) 209-213, 1976.
Inspire Record 113333 DOI 10.17182/hepdata.37429

None

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

A Measurement of the Polarization Parameter in Backward pi- p Elastic Scattering at 3.5-GeV/c

The CERN-Trieste collaboration Birsa, R. ; Bradamante, F. ; Conetti, S. ; et al.
Nucl.Phys.B 117 (1976) 77-94, 1976.
Inspire Record 110105 DOI 10.17182/hepdata.35603

The polarization parameter has been measured for π − p elastic scattering in the backward region at 3.5 GeV/ c incident momentum. The experimental set-up consisted of a polarized target in a spectrometer magnet, hodoscopes and wire spark chambers. Data are presented for the range −0.95< u ⩽−0.19 GeV 2 . An isospin analysis has been carried out to separate the I u = 1 2 and I u = 3 2 contributions.

1 data table match query

BACKWARD SCATTERING.