We present a measurement of the ttbar cross section using high-multiplicity jet events produced in ppbar collisions at sqrt{s}=1.96 TeV. These data were recorded at the Fermilab Tevatron collider with the D0 detector. Events with at least six jets, two of them identified as b jets, were selected from a 1 fb-1 data set. The measured cross section, assuming a top quark mass of 175 GeV/c^2, is 6.9 \pm 2.0 pb, in agreement with theoretical expectations.
Measured top topbar cross section at two values of the top mass.
It has been postulated that partonic orbital angular momentum can lead to a significant double-helicity dependence in the net transverse momentum of Drell-Yan dileptons produced in longitudinally polarized p+p collisions. Analogous effects are also expected for dijet production. If confirmed by experiment, this hypothesis, which is based on semi-classical arguments, could lead to a new approach for studying the contributions of orbital angular momentum to the proton spin. We report the first measurement of the double-helicity dependence of the dijet transverse momentum in longitudinally polarized p+p collisions at sqrt(s) = 200 GeV from data taken by the PHENIX experiment in 2005 and 2006. The analysis deduces the transverse momentum of the dijet from the widths of the near- and far-side peaks in the azimuthal correlation of the dihadrons. When averaged over the transverse momentum of the triggered particle, the difference of the root-mean-square of the dijet transverse momentum between like- and unlike-helicity collisions is found to be -37 +/- 88(stat) +/- 14(syst) MeV/c.
Values of derived $<z_T>$ and $\hat{x_h}$.
Helicity-averaged $\sqrt{<j^2_T>}$ and $\sqrt{<k^2_T>}$ for combined 2005 and 2006 data.
Difference in $\sqrt{<j^2_T>}$ and $\sqrt{<k^2_T>}$ for like- minus unlike-helicity combinations.
We present the first measurement of dijet angular distributions in ppbar collisions at sqrt{s}=1.96TeV at the Fermilab Tevatron Collider. The measurement is based on a dataset corresponding to an integrated luminosity of up to 0.7fb-1 collected with the D0 detector. Dijet angular distributions have been measured over a range of dijet masses, from 0.25TeV to above 1.1TeV. The data are in good agreement with the predictions of perturbative QCD and are used to constrain new physics models including quark compositeness, large extra dimensions, and TeV-1 scale extra dimensions. For all models we set the most stringent direct limits to date.
Normalized differential distribution in CHI(dijet) for two-jet mass 250 to 300 GeV and the non perturbative correction factor.
Normalized differential distribution in CHI(dijet) for two-jet mass 300 to 400 GeV and the non perturbative correction factor.
Normalized differential distribution in CHI(dijet) for two-jet mass 400 to 500 GeV and the non perturbative correction factor.
We present inclusive charged hadron elliptic flow v_2 measured over the pseudorapidity range |\eta| < 0.35 in Au+Au collisions at sqrt(s_NN) = 200 GeV. Results for v_2 are presented over a broad range of transverse momentum (p_T = 0.2-8.0 GeV/c) and centrality (0-60%). In order to study non-flow effects that are not correlated with the reaction plane, as well as the fluctuations of v_2, we compare two different analysis methods: (1) event plane method from two independent sub-detectors at forward (|\eta| = 3.1-3.9) and beam (|\eta| > 6.5) pseudorapidities and (2) two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p_T and in centrality 0-40%. There is at most 20% difference of the v_2 between the two event plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event plane measurements are discussed.
Centrality classes and average number of participant nucleons $\langle N_{part} \rangle$ obtained from a Glauber Monte Carlo simulation of the BBC and ZDC responses for Au+Au collision at $\sqrt{s_{NN}}$ = 200 GeV.
Comparison of Res{$\Psi_n$;X} and Res{$\Psi_n$;Y} with Res{$\Psi_n$} for the BBC event plane and ZDC-SMD event plane as a function of centrality.
Charged hadron $v_2$($p_T$) in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from the two-particle cumulant method, the BBC event plane, and the ZDC-SMD event plane for the indicated centralities.
We present cross section measurements for Z/gamma*+jets+X production, differential in the transverse momenta of the three leading jets. The data sample was collected with the D0 detector at the Fermilab Tevatron proton anti-proton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of 1 fb-1. Leading and next-to-leading order perturbative QCD predictions are compared with the measurements, and agreement is found within the theoretical and experimental uncertainties. We also make comparisons with the predictions of four event generators. Two parton-shower-based generators show significant shape and normalization differences with respect to the data. In contrast, two generators combining tree-level matrix elements with a parton shower give a reasonable description of the the shapes observed in data, but the predicted normalizations show significant differences with respect to the data, reflecting large scale uncertainties. For specific choices of scales, the normalizations for either generator can be made to agree with the measurements.
PT distribution of the first jet in events with one or more jets with additional constraints on the electrons.
PT distribution of the first jet in events with one or more jets.
PT distribution of the second jet in events with two or more jets with additional constraints on the electrons.
We present the first measurement of photoproduction of J/psi and of two-photon production of high-mass e+e- pairs in electromagnetic (or ultra-peripheral) nucleus-nucleus interactions, using Au+Au data at sqrt(s_NN) = 200 GeV. The events are tagged with forward neutrons emitted following Coulomb excitation of one or both Au^{star} nuclei. The event sample consists of 28 events with m_{e+e-} > 2 GeV/c^2 with zero like-sign background. The measured cross sections at midrapidity of d\sigma / dy (J/psi + Xn, y=0) = 76 +/- 33 (stat) +/- 11 (syst) micro b and d^2\sigma/dm dy (e^+e^- + Xn, y=0) = 86 +/- 23 (stat) +/- 16 (syst) micro b/(GeV/c^2) for m_{e+e-} \in [2.0,2.8] GeV/c^2 are consistent with various theoretical predictions.
J/PSI N for ultra peripheral Au+Au reactions. The values has been obtained from the fit of the number of counts as a function of the mass of the e+e- pairs detected. The J/PSI pick has been fixed at the known mass ofJ/PSI : 3.097 GeV/c2.
e+e- pairs N in ultra peripherals Au + Au reactions. The values has been obtained from the fit of the number of counts as a function of the mass of the e+e- pairs.The results are given for 3 intervals of masses of the electron pair : 2.0 to 2.3, 2.3 to 2.8 and 2.0 to 2.8 Gev/c2.
J/PSI production cross section at mid rapidity for ultra peripheral Au+Au reactions.
The momentum distribution of electrons from semi-leptonic decays of charm and bottom for mid-rapidity |y|<0.35 in p+p collisions at sqrt(s)=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 2 < p_T < 7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial D/D^bar --> e^{+/-} K^{-/+} X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p_T. A fixed-order-plus-next-to-leading-log (FONLL) perturbative quantum chromodynamics (pQCD) calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is \sigma_{b\b^bar}= 3.2 ^{+1.2}_{-1.1}(stat) ^{+1.4}_{-1.3}(syst) micro b.
Bottom contribution to the electrons from heavy flavor decay as a function of PT. These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The g3data program indicates an extra uncertainty of 0.01 on these values.
Differential bottom production cross section at mid rapidity (y=0) To obtain this value, the differential "bottom-decay" electrons cross-section has been extrapolated to PT=0 using the spectrum shape predicted by pQCD. The b->e branching ratio used was 10 +-1%.
Invariant cross section of electrons from heavy flavor decay versus PT These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The values in the last column indicate the level of uncertainty intoduced by g3data.
We report the observation at the Relativistic Heavy Ion Collider (RHIC) of suppression of back-to-back correlations in the direct photon+jet channel in Au+Au relative to p+p collisions. Two-particle correlations of direct photon triggers with associated hadrons are obtained by statistical subtraction of the decay photon-hadron background. The initial momentum of the away-side parton is tightly constrained, because the parton-photon pair exactly balance in momentum at leading order in perturbative quantum chromodynamics (pQCD), making such correlations a powerful probe of the in-medium parton energy loss. The away-side nuclear suppression factor, I_AA, in central Au+Au collisions, is 0.32 +/- 0.12(stat) +/- 0.09(syst) for hadrons of 3 < p_T < 5 in coincidence with photons of 5 < p_T < 15 GeV/c. The suppression is comparable to that observed for high-p_T single hadrons and dihadrons. The direct photon associated yields in p+p collisions scale approximately with the momentum balance, z_T = p_T^hadron/p_T^photon, as expected for a measure of the away-side parton fragmentation function. We compare to Au+Au collisions for which the momentum balance dependence of the nuclear modification should be sensitive to the path-length dependence of parton energy loss.
direct $\gamma$-hadron yields per trigger p+p and Au+Au at 5<$p_{T}^{\gamma}$<7 GeV/c.
direct $\gamma$-hadron yields per trigger p+p and Au+Au at 7<$p_{T}^{\gamma}$<9 GeV/c.
direct $\gamma$-hadron yields per trigger p+p and Au+Au at 9<$p_{T}^{\gamma}$<12 GeV/c.
Measurements of the azimuthal anisotropy of high-\pT neutral pion neutral pion production in Au+Au collisions at sqrt(s_NN) = 200 GeV by the PHENIX experiment are presented. The data included in this paper were collected during the 2004 RHIC running period and represent approximately an order of magnitude increase in the number of analyzed events relative to previously published results. Azimuthal angle distributions of pi^0s detected in the PHENIX electromagnetic calorimeters are measured relative to the reaction plane determined event-by-event using the forward and backward beam-beam counters. Amplitudes of the second Fourier component (v_2) of the angular distributions are presented as a function of pi^0 transverse momentum p_T for different bins in collision centrality. Measured reaction plane dependent pi^0 yields are used to determine the azimuthal dependence of the pi^0 suppression as a function of p_T, R_AA (Delta phi,p_T). A jet-quenching motivated geometric analysis is presented that attempts to simultaneously describe the centrality dependence and reaction plane angle dependence of the pi^0 suppression in terms of the path lengths of hypothetical parent partons in the medium. This set of results allows for a detailed examination of the influence of geometry in the collision region, and of the interplay between collective flow and jet-quenching effects along the azimuthal axis.
$\pi^0 v_2$ as function of centrality. All errors are absolute.
$\pi^0 v_2$ as function of centrality. All errors are absolute.
Rebinned $R_{AA}$ for $\Delta \phi$, $p_T$, and path length dependence,
Bose-Einstein correlations of charged kaons are measured for Au+Au collisions at sqrt(s_NN) = 200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function if N_part^1/3 with zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r >~ 10 fm, although the bulk emission at lower radius is well-described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.
3D correlation function of charged kaon pairs measured for 0.3 < $k_T$ < 1.5 GeV/$c$ at 0-30% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
3D Gaussian HBT radius parameters for charged kaon pairs as a function of $N_{part}^{1/3}$ measured for 0.3 < $k_T$ < 1.5 GeV/$c$ and $m_T$ measured for 0-30% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
3D Gaussian HBT radius parameters for charged kaon pairs as a function of $N_{part}^{1/3}$ measured for 0.3 < $k_T$ < 1.5 GeV/$c$ and $m_T$ measured for 0-30% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.