We present evidence for the existence of two strange J P = 1 − mesons; one at 1410 MeV/c 2 coupling principally to K ∗ (892)π , and the other at 1790 MeV/c 2 couplingto K π , K ∗ π and ϱ K. The data derive from a partial wave analysis of the K 0 π + π − system produced in the reaction K − p → K 0 π + π − n at 11 GeV /c . The production mechanism and quark model assignment of each state are discussed. The state at 1410 MeV/c 2 most naturally understood as the first radial excitation of the K ∗ (892), and the 1790 MeV/c 2 object can be interpreted as the triplet D wave partner to the 3 − K ∗ (1780).
No description provided.
Differential cross sections for center of mass scattering angles near 90° are presented for the reactions K ̄ ° p → π + Λ° , K ̄ ° p → π + Σ° and K L °p → K S °p in the momentum interval 1.0 to 7.5 GeV / c . The energy dependences of these cross sections are found to be equally well described by the parameterization: ( d σ d Ω ) 90° ∞ s −2 or ( d σ d Ω ) 90° ∞ exp (− bp ⊥ ) .
No description provided.
No description provided.
No description provided.
The results of a wire chamber spectrometer experiment studying K ∗ (890) production in the reaction K − p→ K − π + n at 13 GeV are presented. Strong forward structure is observed for | t |< m 2 π in the s -channel density matrix elements and differential cross section. These features are similar to those observed in π − p→ϱ 0 n data and are characteristics of π exchange. In contrast in the intermediate, | t | ∼ 0.2 GeV 2 , and large momentum transfer regions K ∗ (890) production is demonstrated by the natural parity ϱ−A 2 exchange contribution.
No description provided.
The logarithmic slope of the differentical cross section for K ± p elastic scattering at 10 and 14 GeV, and for π ± p and p ± p at 10GeV has been measured. Rich structure is observed in the forward slope for all processes, which is well accounted for by the properties of a peripheral exchange amplitude for the nonexotic reactions, and by a peripheral component of the diffractive amplitude as clearly seen in the exotic processes, K ± p and pp.
GRAPH OF D(SIG)/DT.
SLOPE AS A FUNCTION OF T.
None
No description provided.
The variation of the differential cross section for π+ photoproduction from hydrogen, with γ-ray energy, has been examined at a laboratory angle of 58° to the γ-ray beam. A thin hydrogen target, and a counter system designed to eliminate random events, have been employed. Mean values for the differential cross section dσdΩ at γ-ray energies of 162, 168, 175, and 192 Mev are 5.42±0.38, 5.77±0.41, 6.74±0.47, and 8.22±0.58 μb/sr, respectively, where the error limits refer to relative values. The results substantiate the rising trend of the interaction quantity {(dσdΩ)(μ2pε)(1+ωM)2} near threshold, in accord with dispersion theory; and the absolute cross sections are compatible with a threshold value for a0+ near 20 μb/ steradian, consistent with findings in related pion work.
No description provided.
Cross sections, differential cross sections, and hyperon polarization results are presented for the reactions K¯0p→Λπ+ and K¯0p→Σ0π+ in the momentum interval 1 to 12 GeV/c. Emphasis is placed on the comparison of Λ and Σ channels, and on the momentum dependences of the data. In particular, the Λ polarization data are consistent with being independent of energy above 2 GeV/c; and the slopes of the forward cross sections are found to increase toward the slope values for the line-reversed reactions πp→K(Λ,Σ) as energy increases.
No description provided.
No description provided.
RESONANCE REGION CROSS SECTIONS.
We present final measurements of the Z boson-lepton coupling asymmetry parameters Ae, Amu, and Atau with the complete sample of polarized Z bosons collected by the SLD detector at the SLAC Linear Collider. From the left-right production and decay polar angle asymmetries in leptonic Z decays we measure Ae = 0.1544 +- 0.0060, Amu = 0.142 +- 0.015, and Atau = 0.136 +- 0.015. Combined with our left-right asymmetry measured from hadronic decays, we find Ae = 0.1516 +- 0.0021. Assuming lepton universality, we obtain a combined effective weak mixing angle of sin**2 theta^{eff}_W = 0.23098 +- 0.00026.
No description provided.
We present a direct measurement of the parity-violation parameter $A_c$ in the coupling of the $Z^0$ to $c$-quarks with the SLD detector. The measurement is based on a sample of 530k hadronic $Z^0$ decays, produced with a mean electron-beam polarization of $|P_e| = 73 %$. The tagging of $c$-quark events is performed using two methods: the exclusive reconstruction of $D^{\ast+}$, $D^+$, and $D^0$ mesons, and the soft-pions ($\pi_s$) produced in the decay of $D^{\ast+}\to D^0 \pi_s^+$. The large background from $D$ mesons produced in $B$ hadron decays is separated efficiently from the signal using precision vertex information. The combination of these two methods yields $A_c = 0.688 \pm 0.041.$
CONST(NAME=A_C) is connected with the forward-backward asymmetry by following way: ASYM(NAME=FB) = ABS(P_e)*CONST(NAME=A_C)*2z/(1 + z**2), where z = cos(theta), theta is the polar angle of the outgoing fermion relative to the incident electron, P_e is the longitudinal polarization of the electron beam. Two values for constant A_c were obtained using two different c-quark tagging methods: exclusive charmed-meson reconstruction (C=EXCLUSIVE) and inclusive soft-pion analysis (C=SOFT_PIONS).
We have made the first direct measurement of the parity-violating coupling of the Z^0 boson to the strange quark, A_s, using ~550,000 e^+e^- ->Z^0->hadrons events produced with a polarized electron beam and recorded by the SLD experiment. Z^0 -> s-sbar events were tagged by the absence of B or D hadrons and the presence in each hemisphere of a high-momentum K^+- or K^0_s. From the polar angle distributions of the strangeness-signed thrust axis, we obtained A_s=0.895+-0.066(stat.)+-0.062(syst.). The analyzing power and u-ubar plus d-dbar background were constrained using the data.
No description provided.