We present measurements of the differential and polarization cross sections for the reactions KL0p→Ks0p, Λπ+, Σ0π+, and Λπ+π0 made in a hydrogen bubble chamber exposed to a beam of KL0 with incident momentum 550±35 MeV/c. The quasielastic data imposes additional constraints on the partial-wave analyses of the KN and K¯N systems. Our data show no strong energy-dependent effects in the region of the reported Σ(1580), JP=32− state. The phase of the forward regeneration amplitude was found to be about - 160° independent of KL0 momentum.
SYSTEMATIC ERRORS INCLUDED.
ROUGH FIT - POSSIBLY OTHER SYSTEMATIC ERRORS.
No description provided.
We present data on inclusive negative-hadron production from charged-current antineutrino interactions in a 21% Ne-H mixture. Inclusive single-particle distributions are presented and are shown to be insensitive to the momentum transferred to the hadron vertex. Comparisons made to inclusive data from π−p and π−n interactions indicate a close similarity between the hadrons resulting from π-nucleon and ν¯-nucleus interactions. The general features of the ν¯-nucleus data are found to be similar to those seen in ν¯p interactions. This last observation implies that ν¯p and ν¯n interactions are similar and that nuclear effects are small.
No description provided.
No description provided.
No description provided.
A partial-wave analysis of the diffractively produced p π + π − system has been performed for the reaction K − p→K − (p π + π − ) at 10, 14.3 and 16 GeV/ c using the isobar model. For p π + π − masses below 1.6 GeV, the system can be described by the states with spin-parity 1 2 + and 3 2 − . The dominant state is the 3 2 − S-wave Δπ . No evidence for resonance production can be found here. For higher masses, the states 5 2 + and 5 2 − are present in addition. The 5 2 − constitutes a violation of the Gribov-Morrison rule and its mass shape is consistent with being the D 15 N ∗ (1670) resonance. The peak in the p π + π − mass spectrum at 1.7 GeV cannot be explained by one single spin-parity state. A comparison of the diffractive reaction pomeron + p → p ππ with the formation experiment π p → N ππ is made.
No description provided.
A ( K π π ) + mass enhancement is observed in the reactions K − p → Ξ −K o + π + π o − when events with a small (K − → Ξ − ) four momentum transfer squared are selected. The signal is also visible in the reaction K − p → Ξ − π + + neutrals. The enhancement, centered at 1.28 GeV, is seen to decay preferentially into Kϱ with spin-parity J P = 1 + . The cross section for K − p→ Ξ − C + (1.28) with C + → K ϱ at 4.15 GeV/c incident K − momentum is (6.2 ± 0.6) μ b.
ASSUMING ISOSPIN HALF FOR C(1280)+ AND C(1400)+. FOR C(1280)+, D(SIG)/DU HAS SLOPE OF 1.60 +- 0.30 GEV**-2. THESE AXIAL VECTOR RESONANCES ARE HERE ENCODED AS QLOW(1240)+ AND QHIGH(1340)+.
We report on measurements of inclusive π 0 production at c.m. energies of 53 and 63 GeV, θ ≅90°, from p-p collisions at the CERN ISR. In the range 0.2< x t <0.45 the data can be described by a form: Ed 3 σ d p 3 ∝p − (6.6±0.8) t (1−x t ) (9.6±1.0) .
No description provided.
No description provided.
We present experimental data on the K L 0 p → K S 0 p reaction between 4 and 14 GeV/ c in the range 0.1 ≲ | t | ≲ 2 GeV 2 . This experiment has been performed at the CERN PS, using spark chambers and a large aperture magnet. The results show a break of slope at t = −0.3 GeV 2 . The ω trajectory deduced from the data has an intercept α (0) = 0.5 and a slope α ′ = 0.88. A comparison with various models shows that the non-flip amplitude is dominant.
No description provided.
None
OVERALL NORMALIZATION ERROR NOT INCLUDED. -TMIN IS 0.015 (0.023) GEV**2 FOR THE LAMBDA (SIGMA0) REACTION.
INCLUDING NORMALIZATION UNCERTAINTY IN ERRORS. USING EMPIRICAL FITS TO D(SIG)/DT FOR -T > 1.0 GEV**2.
No description provided.
A mass-dependent asymmetry was observed in the decay angular distribution of a photoproduced K + K − system near the K + K − threshold. The corresponding moments 〈 Y 1 0 〉 have been evaluated. Interpreting the asymmetry as an S-P wave interface due to the states S 993 ∗ (0 + ) and ø 1019 (1 − ) one can compute the moments 〈 Y 1 0 〉 through an amplitude analysis. The theoretical calculation reproduces the experimental results well, if one assumes a real S-wave amplitude for the S 993 ∗ . The data cannot be explained by a non-resonant real S-wave. Other possibilities have been discussed. An estimate of the photoproduction cross section of the S ∗ → K + K − can be given on the basis of the above hypothesis.
No description provided.
None
THE DATA POINTS AT -T = 0.40 AND 0.60 GEV**2 WERE OBTAINED FROM THE PAPER BY J. P. DE BRION ET AL., NP B32, 557 (1971). THESE DATA OF O. GUISAN ET AL., PL 18, 200 (1965) ARE USED TO DETERMINE THE ABSOLUTE NORMALIZATION.
Inclusive cross sections for the production of π ± and K ± mesons in proton-proton collisions have been measured at a c.m. energy √ s = 45 GeV, in the range 0.41 < x < 0.95 and 0.35 < p T < 1.45 GeV, where x = 2 p L/√ s and p L , p T are the longitudinal and transverse components of the momentum of the meson. Within the measured range the p T dependence of the invariant cross section is essentially independent of x and weakly dependent on the type of particle. For all particles the invariant cross sections at fixed p T fall by three orders of magnitude between x = 0.4 and 0.95. Except at the highest values of x and p T , the statistical accuracy is better than 10%. The data are compared with a triple-Regge model and with a simple quark-parton model.
No description provided.
No description provided.
No description provided.