Evidence for a pi eta P-wave in anti-p p annihilations at rest into pi0 pi0 eta.

The Crystal Barrel collaboration Abele, A. ; Adomeit, J. ; Amsler, C. ; et al.
Phys.Lett.B 446 (1999) 349-355, 1999.
Inspire Record 498113 DOI 10.17182/hepdata.28121

A partial wave analysis is presented of two high-statistics data samples of protonium annihilation into π 0 π 0 η in liquid and 12 atm gaseous hydrogen. The contributions from the 1 S 0 , 3 P 1 and 3 P 2 initial atomic fine structure states to the two data sets are different. The change of their fractional contributions when going from liquid to gaseous H 2 as calculated in a cascade model is imposed in fitting the data. Thus the uncertainty in the fraction of S-state and P-state capture is minimized. Both data sets allow a description with a common set of resonances and resonance parameters. The inclusion of a π η P-wave in the fit gives supportive evidence for the ρ ̂ (1405) , with parameters compatible with previous findings.

1 data table

No description provided.


Study of the pi0 pi0 eta-prime final state in anti-p p annihilation at rest

The Crystal Barrel collaboration Abele, A. ; Adomeit, J. ; Amsler, C. ; et al.
Phys.Lett.B 404 (1997) 179-186, 1997.
Inspire Record 457856 DOI 10.17182/hepdata.28292

A partial wave analysis of p̄p → π 0 π 0 η ′ has been performed using the η′ → π 0 π 0 η and η ′ → γγ decay modes. The data are dominated by an η ′ recoiling against the ( ππ ) S-wave. In addition, α 2 (1320) → η′π 0 is needed. There is evidence for contributions from α 0 (1450) → η′π 0 . The branching ratio of α 0 (1450) → η′π 0 with respect to ηπ 0 is consistent with the prediction of SU(3).

1 data table

No description provided.


Coupled channel analysis of anti-p p annihilation into pi0 pi0 pi0, pi0 eta eta and pi0 pi0 eta

The Crystal Barrel collaboration Amsler, C. ; Armstrong, D.S. ; Baker, C.A. ; et al.
Phys.Lett.B 355 (1995) 425-432, 1995.
Inspire Record 406130 DOI 10.17182/hepdata.28523

We confirm the existence of the two I G ( J PC ) = 0 + (0 ++ ) resonances f 0 (1370) and f 0 (1500) reported by us in earlier analyses. The analysis presented here couples the final states π 0 π 0 π 0 , π 0 π 0 η and π 0 ηη of p p annihilation at rest. It is based on a 3 × 3 K -matrix. We find masses and widths of M = (1390±30) MeV, Γ = (380±80) MeV; and M = (1500±10) MeV, Γ = (154 ± 30) MeV, respectively. The product branching ratios for the production and decay into π 0 π 0 and ηη of the f 0 (1500) are (1.27 ± 0.33) · 10 −3 and (0.60 ± 0.17) · 10 −3 , respectively.

1 data table

No description provided.


Observation of radiative anti-p p annihilation into a phi meson

The Crystal Barrel collaboration Amsler, C. ; Armstrong, D.S. ; Augustin, I. ; et al.
Phys.Lett.B 346 (1995) 363-370, 1995.
Inspire Record 401140 DOI 10.17182/hepdata.28709

The annihilation p p → Φγ has been investigated with the Crystal Barrel detector at LEAR for antiprotons stopped in liquid hydrogen. The observed branching ratio BR ( p p → Φγ = (1.7 ± 0.4) · 10 −5 is almost two orders of magnitude higher than expected from the OZI-rule. As a by-product, the branching ratios BR ( p p → K L K S ) = (9.0 ± 0.6) · 10 −4 and BR ( p p → Φπ 0 ) = (5.5 ± 0.7) · 10 −4 have been measured.

1 data table

No description provided.


E decay to eta pi pi in anti-p p annihilation at rest

The Crystal Barrel collaboration Amsler, C. ; Armstrong, D.S. ; Baker, C.A. ; et al.
Phys.Lett.B 358 (1995) 389-398, 1995.
Inspire Record 407517 DOI 10.17182/hepdata.28511

We have observed the ηπ + π − and ηπ 0 π 0 decay modes of the E meson in p p annihilation at rest into π + π − π 0 π 0 η . The mass and width of the E meson are 1409 ± 3 and 86 ± 10 MeV. The production and decay branching ratio is B( p p → Eππ)B(E → ηππ) = (3.3 ± 1.0) × 10 −3 . With a spin-parity analysis we determine that J P = 0 − . The observation of the ηπ 0 π 0 decay mode establishes that E is isoscalar ( C = +1). We find that E decays to η ( ππ ) s (where ( ππ ) s is an S-wave dipion) and πa 0 (980)(→ πη ) with a relative branching ratio of (78 ± 16) %. Using the K K π production and decay branching ratio measured earlier we determine that B[E → K K π] B[E → ηππ] = 0.61 ± 0.19 . A comparison with observations in radiative J Ψ decays suggests that E and ι η (1416) are identical.

1 data table

Unobserved channels (E --> ETA 2PI0)2PI0 and (E --> ETA PI+ PI-)PI+PI- was taken into account.