$\pi^+ p$ Backward Elastic Scattering from 2-GeV/c to 6-GeV/c

Lennox, Arlene J. ; Baker, W.F. ; Eartly, David P. ; et al.
Phys.Rev.D 11 (1975) 1777, 1975.
Inspire Record 90923 DOI 10.17182/hepdata.24918

The backward angular distributions obtained in an experiment at the Zero Gradient Synchrotron of Argonne National Laboratory were used to systematically study the energy dependence of the 180° differential cross section for π+p elastic scattering in the center-of-mass energy region from 2159 to 3487 MeV. At each of 38 incident pion momenta between 2.0 and 6.0 GeV/c, a focusing spectrometer and scintillation counter hodoscopes were used to obtain differential cross sections for typically five pion scattering angles from 141° to 173° in the laboratory. Values for dσdΩ at 180° were then obtained by extrapolation. A resonance model and an interference model were used to perform fits to the energy dependence of dσdΩ (180°). Both models led to good fits to our data and yielded values for the masses, widths, parities, and the product of spin and elasticity for the Δ(2200), Δ(2420), Δ(2850), and Δ(3230) resonances. Our data confirm the existence of the Δ(3230) and require the negative-parity Δ(2200).

1 data table match query

No description provided.


Particle dependence of azimuthal anisotropy and nuclear modification of particle production at moderate p(T) in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, John ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 052302, 2004.
Inspire Record 620309 DOI 10.17182/hepdata.93260

We present STAR measurements of the azimuthal anisotropy parameter $v_2$ and the binary-collision scaled centrality ratio $R_{CP}$ for kaons and lambdas ($\Lambda+\bar{\Lambda}$) at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. In combination, the $v_2$ and $R_{CP}$ particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish $p_T \approx 5$ GeV/c as the value where the centrality dependent baryon enhancement ends. The $K_S^0$ and $\Lambda+\bar{\Lambda}$ $v_2$ values are consistent with expectations of constituent-quark-number scaling from models of hadron fromation by parton coalescence or recombination.

0 data tables match query

Analysis of the Energy Weighted Angular Correlations in Hadronic $e^+ e^-$ Annihilations at 22-{GeV} and 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 14 (1982) 95, 1982.
Inspire Record 12010 DOI 10.17182/hepdata.16413

Measurements of energy weighted angular correlations in electron positron annihilations at c.m. energies of 22 GeV and 34 GeV are presented.

0 data tables match query

Production of $J/\psi$ in 16-{GeV} and 22-{GeV} $\pi^-$ Cu Collisions

LeBritton, J. ; McCal, D. ; Melissinos, A.C. ; et al.
Phys.Lett.B 81 (1979) 401-404, 1979.
Inspire Record 7053 DOI 10.17182/hepdata.50278

We have measured the inclusive production of J ψ in 16 and 22 GeV π − copper collisions in a wide aperture magnetic spectrometer. The cross section per Cu nucleus for x > 0 corrected for branching ratio is 64 ± 38 nb at 16 GeV and 196 ± 38 nb at 22 GeV. As threshold is approached, the mean values of the Feynman x distribution increase and the cross section for J ψ production drops steeply. This can be understood in terms of the quark-fusion model where the antiquark content of the pion makes an increasingly significant contribution as M 2 s increases.

0 data tables match query

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 158-178, 2016.
Inspire Record 1477585 DOI 10.17182/hepdata.73997

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.

1 data table match query

The measured differential elastic cross section. In addition to the statistical and total systematic uncertainties, the following 22 systematic shifts are given, which are included in the profile fit with their signs: -- Constraints: Beam optics uncertainty obtained by varying the ALFA constraints in the optics fit -- QScan: Variation by +/- 0.1 % of the quadrupole strength -- Q2: Fit of the strength of Q2 using the best value for the strength of Q1 and Q3 -- Q5Q6: Variation of the strength of Q5 and Q6 by -0.2% as indicated by machine constraints -- MadX: Uncertainty related to the beam transport replacing matrix transport by MadX PTC tracking -- Qmisal: Uncertainty due to the mis-alignment of the quadrupoles in the beam line -- Q1Q3: Propagation of the optics fit uncertainty in the strenght of Q1 and Q3 on the differential elastic cross section -- Aopt: Alignment uncertainty from the optimization procedure -- Offv: Alignment uncertainty related to the vertical beam center offset -- Offh: Alignment uncertainty related to the horizontal beam center offset -- Ang: Alignment uncertainty related to the detector rotation in the x-y plane -- BGn: Uncertainty from the background normalization -- BGs: Uncertainty from the background shape -- MCres: Error from modelling of the detector response -- Slope: Residual dependence on the physics model estimated by varying the nuclear slope in the simulation by +/- 1 GeV^-2 -- Emit: Uncertainty from the emittance used to calculate beam divergence in the simulation -- Unf: Unfolding uncertainty from the data-driven closure test -- Trac: Uncertainty from the variation of the track reconstruction selection cuts -- Xing: Uncertainty from residual crossing angle in the horizontal plane -- Eff: Uncertainty from the reconstruction efficiency -- Lumi: Luminosity uncertainty (+/- 1.5%) -- Ebeam: Uncertainty from the nominal beam energy (+/- 0.65%) Small differences in the values given here compared to the published version are related to insignificant rounding issues.


A portrait of the Higgs boson by the CMS experiment ten years after the discovery

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Nature 607 (2022) 60-68, 2022.
Inspire Record 2104672 DOI 10.17182/hepdata.127765

In July 2012, the ATLAS and CMS Collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 GeV. Ten years later, and with the data corresponding to the production of 30 times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin-parity quantum numbers, determined its mass and measured its production cross sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross section for the production of a pair of Higgs bosons, on the basis of data from proton-proton collisions at a centre-of-mass energy of 13 TeV. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next fifteen years, will help deepen our understanding of this crucial sector.

18 data tables match query

Signal strength modifiers per production mode $\mu_i$.

Signal strength modifiers per decay mode $\mu^f$.

Simultaneous coupling measurement $\kappa_V/\kappa_f$

More…

Search for ZZ and ZH Production in the $\mathrm{b\bar{b}b\bar{b}}$ Final State using Proton-Proton Collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-011, 2024.
Inspire Record 2772624 DOI 10.17182/hepdata.146898

A search for ZZ and ZH production in the $\mathrm{b\bar{b}b\bar{b}}$ final state is presented, where H is the standard model (SM) Higgs boson. The search uses an event sample of proton-proton collisions corresponding to an integrated luminosity of 133 fb$^{-1}$ collected at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The analysis introduces several novel techniques for deriving and validating a multi-dimensional background model based on control samples in data. A multiclass multivariate classifier customized for the $\mathrm{b\bar{b}b\bar{b}}$ final state is developed to derive the background model and extract the signal. The data are found to be consistent, within uncertainties, with the SM predictions. The observed (expected) upper limits at 95% confidence level are found to be 3.8 (3.8) and 5.0 (2.9) times the SM prediction for the ZZ and ZH production cross sections, respectively.

1 data table match query

Expected and observed ZZ and ZH signal strengths and their corresponding 95% CL upper limits. The upper limits are obtained from a fit to the SvB signal probabilities under the hypothesis of no ZZ->4b or ZH->4b signal.


The Contribution of $q \bar{q}$ Annihilations to Dimuon Production in $\pi N$ Interactions

Reece, C. ; LeBritton, J. ; McCal, D. ; et al.
Phys.Lett.B 85 (1979) 427-431, 1979.
Inspire Record 7886 DOI 10.17182/hepdata.27323

We present data on dimuon production by 16 GeV π + and π − beams on a Cu target. From the data we evaluate, for π − N collisions, the fraction of dimuon events that originate from the annihilation process q q ̄ → μ + μ − . Using this information the experimentally determined cross section for the process q q ̄ → μ + μ − is observed to be in agreement with the Drell-Yan model over a wide range of incident energies. The observed deviations from exact scaling are of the order predicted by QCD calculations for the Q 2 -dependence of the nucleon and the pion structure function.

0 data tables match query

Observation of the J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-006, 2024.
Inspire Record 2769595 DOI 10.17182/hepdata.147273

The J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb${-1}$. Normalizing to the J/$\psi$$\to$$\mu^+\mu^-$ decay mode leads to a branching fraction [10.1$^{+3.3}_{-2.7}$ (stat) $\pm$ 0.4 (syst) ]$\times$ 10$^{-7}$, a value that is consistent with the standard model prediction.

2 data tables match query

$\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu$ branching fraction

$\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu\mu\mu)$ / $\mathcal{B}(\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi \to \mu\mu)$ ratio


Measurement of the production of a $W$ boson in association with a charmed hadron in $pp$ collisions at $\sqrt{s} = 13\,\mathrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.D 108 (2023) 032012, 2023.
Inspire Record 2628732 DOI 10.17182/hepdata.136060

The production of a $W$ boson in association with a single charm quark is studied using 140 $\mathrm{fb}^{-1}$ of $\sqrt{s} = 13\,\mathrm{TeV}$ proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. The charm quark is tagged by a charmed hadron, reconstructed with a secondary-vertex fit. The $W$ boson is reconstructed from an electron/muon decay and the missing transverse momentum. The mesons reconstructed are $D^{\pm} \to K^\mp \pi^\pm \pi^\pm$ and $D^{*\pm} \to D^{0} \pi^\pm \to (K^\mp \pi^\pm) \pi^\pm$, where $p_{\text{T}}(e, \mu) > 30\,\mathrm{GeV}$, $|\eta(e, \mu)| < 2.5$, $p_{\text{T}}(D) > 8\,\mathrm{GeV}$, and $|\eta(D)| < 2.2$. The integrated and normalized differential cross-sections as a function of the pseudorapidity of the lepton from the $W$ boson decay, and of the transverse momentum of the meson, are extracted from the data using a profile likelihood fit. The measured fiducial cross-sections are $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{-}{+}D^{+}) = 50.2\pm0.2\,\mathrm{(stat.)}\,^{+2.4}_{-2.3}\,\mathrm{(syst.)}\,\mathrm{pb}$, $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{+}{+}D^{-}) = 48.5\pm0.2\,\mathrm{(stat.)}\,^{+2.3}_{-2.2}\,\mathrm{(syst.)}\,\mathrm{pb}$, $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{-}{+}D^{*+}) = 51.1\pm0.4\,\mathrm{(stat.)}\,^{+1.9}_{-1.8}\,\mathrm{(syst.)}\,\mathrm{pb}$, and $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{+}{+}D^{*-}) = 50.0\pm0.4\,\mathrm{(stat.)}\,^{+1.9}_{-1.8}\,\mathrm{(syst.)}\,\mathrm{pb}$. Results are compared with the predictions of next-to-leading-order quantum chromodynamics calculations performed using state-of-the-art parton distribution functions. The ratio of charm to anti-charm production cross-sections is studied to probe the $s$-$\bar{s}$ quark asymmetry and is found to be $R_c^\pm = 0.971\pm0.006\,\mathrm{(stat.)}\pm0.011\,\mathrm{(syst.)}$.

1 data table match query

Measured $|\eta(\ell)|$ differential fiducial cross-section times the single-lepton-flavor W boson branching ratio in the $W^{+}+D^{*-}$ channel with the full breakdown of uncertainties.