Notwithstanding decades of progress since Yukawa first developed a description of the force between nucleons in terms of meson exchange, a full understanding of the strong interaction remains a major challenge in modern science. One remaining difficulty arises from the non-perturbative nature of the strong force, which leads to the phenomenon of quark confinement at distances on the order of the size of the proton. Here we show that in relativistic heavy-ion collisions, where quarks and gluons are set free over an extended volume, two species of produced vector (spin-1) mesons, namely $\phi$ and $K^{*0}$, emerge with a surprising pattern of global spin alignment. In particular, the global spin alignment for $\phi$ is unexpectedly large, while that for $K^{*0}$ is consistent with zero. The observed spin-alignment pattern and magnitude for the $\phi$ cannot be explained by conventional mechanisms, while a model with a connection to strong force fields, i.e. an effective proxy description within the Standard Model and Quantum Chromodynamics, accommodates the current data. This connection, if fully established, will open a potential new avenue for studying the behaviour of strong force fields.
Global spin alignment of $\phi$ and $K^{*0}$ vector mesons in heavy-ion collisions. The measured matrix element $\rho_{00}$ as a function of beam energy for the $\phi$ and $K^{*0}$ vector mesons within the indicated windows of centrality, transverse momentum ($p_T$) and rapidity ($y$). The open symbols indicate ALICE results for Pb+Pb collisions at 2.76 TeV at $p_{T}$ values of 2.0 and 1.4 GeV/c for the $\phi$ and $K^{*0}$ mesons, respectively, corresponding to the $p_{T}$ bin nearest to the mean $p_{T}$ for the 1.0 – 5.0 GeV/$c$ range assumed for each meson in the present analysis. The red solid curve is a fit to data in the range of $\sqrt{s_{NN}} = 19.6$ to 200 GeV, based on a theoretical calculation with a $\phi$-meson field. Parameter sensitivity of $\rho_{00}$ to the $\phi$-meson field is shown in Ref.5. The red dashed line is an extension of the solid curve with the fitted parameter $G_s^{(y)}$. The black dashed line represents $\rho_{00}=1/3.$
Global spin alignment of $\phi$ and $K^{*0}$ vector mesons in heavy-ion collisions. The measured matrix element $\rho_{00}$ as a function of beam energy for the $\phi$ and $K^{*0}$ vector mesons within the indicated windows of centrality, transverse momentum ($p_T$) and rapidity ($y$). The open symbols indicate ALICE results for Pb+Pb collisions at 2.76 TeV at $p_{T}$ values of 2.0 and 1.4 GeV/c for the $\phi$ and $K^{*0}$ mesons, respectively, corresponding to the $p_{T}$ bin nearest to the mean $p_{T}$ for the 1.0 – 5.0 GeV/$c$ range assumed for each meson in the present analysis. The red solid curve is a fit to data in the range of $\sqrt{s_{NN}} = 19.6$ to 200 GeV, based on a theoretical calculation with a $\phi$-meson field. Parameter sensitivity of $\rho_{00}$ to the $\phi$-meson field is shown in Ref.5. The red dashed line is an extension of the solid curve with the fitted parameter $G_s^{(y)}$. The black dashed line represents $\rho_{00}=1/3.$
Example of combinatorial background subtracted invariant mass distributions and the extracted yields as a function of $\cos \theta^*$ for $\phi$ and $K^{*0}$ mesons. \textbf{a)} example of $\phi \rightarrow K^+ + K^-$ invariant mass distributions, with combinatorial background subtracted, integrated over $\cos \theta^*$; \textbf{b)} example of $K^{*0} (\overline{K^{*0}}) \rightarrow K^{-} \pi^{+} (K^{+} \pi^{-})$ invariant mass distributions, with combinatorial background subtracted, integrated over $\cos \theta^*$; \textbf{c)} extracted yields of $\phi$ as a function of $\cos \theta^*$; \textbf{d)} extracted yields of $K^{*0}$ as a function of $\cos \theta^*$.
The measurement of direct photons from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=39$ and 62.4 GeV in the transverse-momentum range $0.4
$R_{\gamma}$ for minimum bias (0-86%) Au+Au collision at $\sqrt{s_{NN}} = 62.4$ GeV (a) and $39$ GeV (b). For $62.4$ GeV also centrality bins of 0-20% (c) and 20-40% (d) are shown. Data points are shown with statistical (bar) and systematic uncertainties (box)
$R_{\gamma}$ for minimum bias (0-86%) Au+Au collision at $\sqrt{s_{NN}} = 62.4$ GeV (a) and $39$ GeV (b). For $62.4$ GeV also centrality bins of 0-20% (c) and 20-40% (d) are shown. Data points are shown with statistical (bar) and systematic uncertainties (box)
Direct photon spectra for minimum bias (0-86%) Au+Au collision at $\sqrt{s_{NN}} = 62.4$ GeV (a) and $39$ GeV (b). For $62.4$ GeV also centrality bins of 0-20% (c) and 20-40% (d) are shown. Data points are shown with statistical and systematic uncertainties, unless the central value is negative (arrows) or is consistent with zero within the statistical uncertainties (arrows with data point). In these cases upper limit with CL = 95$%$ are given.
The PHENIX collaboration presents first measurements of low-momentum ($0.4
Direct photon spectra(Physical Review C87, 054907 (2013)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 200 GeV.
Direct photon spectra(Physics Letters B94, 106 (1980)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 62.4 GeV.
Direct photon spectra(Nucl. Part. Phys. 23, A1 (1997) and Sov. J. Nucl. Phys. 51, 836 (1990)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 63 GeV.
Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems.
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV
Measurements of the fractional momentum loss ($S_{\rm loss}\equiv{\delta}p_T/p_T$) of high-transverse-momentum-identified hadrons in heavy ion collisions are presented. Using $\pi^0$ in Au$+$Au and Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb$+$Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of $S_{\rm loss}$ as a function of a number of variables: the number of participants, $N_{\rm part}$, the number of quark participants, $N_{\rm qp}$, the charged-particle density, $dN_{\rm ch}/d\eta$, and the Bjorken energy density times the equilibration time, $\varepsilon_{\rm Bj}\tau_{0}$. We find that the $p_T$ where $S_{\rm loss}$ has its maximum, varies both with centrality and collision energy. Above the maximum, $S_{\rm loss}$ tends to follow a power-law function with all four scaling variables. The data at $\sqrt{s_{_{NN}}}$=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of $S_{\rm loss}$ with $dN_{\rm ch}/d\eta$ and $\varepsilon_{\rm Bj}\tau_{0}$, lending insight on the physics of parton energy loss.
Global variables for Au+Au collisions at RHIC from PHENIX.
Global variables for Au+Au collisions at RHIC from PHENIX.
Global variables for Cu+Cu collisions at RHIC from PHENIX.
We report the measurement of cumulants ($C_n, n=1\ldots4$) of the net-charge distributions measured within pseudorapidity ($|\eta|<0.35$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. $C_1/C_2$, $C_3/C_1$) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of $C_1/C_2 = \mu/\sigma^2$ and $C_3/C_1 = S\sigma^3/\mu$ can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.
Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.
Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.
Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.
We present measurements of Collins asymmetries in the inclusive process $e^+e^- \rightarrow h_1 h_2 X$, $h_1h_2=KK,\, K\pi,\, \pi\pi$, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb$^{-1}$ collected by the BaBar experiment at the PEP-II $B$ factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike- to like-sign, and unlike- to all charged $h_1 h_2$ pairs, which increase with hadron energies. The $K\pi$ asymmetries are similar to those measured for the $\pi\pi$ pairs, whereas those measured for high-energy $KK$ pairs are, in general, larger.
Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.
Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{2}/(1+\cos^2\theta_{2})$ is summarized, calculated in the RF0 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.
Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for $K\pi$ hadron pairs. In the first column, the $z$ bins and their respective mean values for the hadron ($K$ or $\pi$) in one hemisphere are reported; in the following column, the same variables for the second hadron ($K$ or $\pi$) are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $K\pi$ pair and dividing by the number of $K\pi$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.
We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.
The rate of antideuteron production from the decay of UPSILON(3S).
The rate of antideuteron production from the decay of UPSILON(2S).
The rate of antideuteron production from the decay of UPSILON(1S).
Inclusive production cross sections of $\pi^\pm$, $K^\pm$ and $p\bar{p}$ per hadronic $e^+e^-$ annihilation event in $e^+e^-$ are measured at a center-of-mass energy of 10.54 GeV, using a relatively small sample of very high quality data from the BaBar experiment at the PEP-II $B$-factory at the SLAC National Accelerator Laboratory. The drift chamber and Cherenkov detector provide clean samples of identified $\pi^\pm$, $K^\pm$ and $p\bar{p}$ over a wide range of momenta. Since the center-of-mass energy is below the threshold to produce a $B\bar{B}$ pair, with $B$ a bottom-quark meson, these data represent a pure $e^+e^- \rightarrow q\bar{q}$ sample with four quark flavors, and are used to test QCD predictions and hadronization models. Combined with measurements at other energies, in particular at the $Z^0$ resonance, they also provide precise constraints on the scaling properties of the hadronization process over a wide energy range.
Differential cross section for prompt PI+-, K+- and PBAR/P production.
Differential cross section for conventional PI+-, K+- and PBAR/P production.
Integrated cross sections for prompt PI+-, K+- and PBAR/P production. The second (sys) error is the uncertainty due to the model dependence of the extrapolation.
The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.
Direct photon-hadron pair per-trigger yields vs Delta-phi (Au+Au and p+p)
Integrated per-trigger yields and I_AA vs xi
Integrated per-trigger yields and I_AA vs xi