A measurement of the differential cross section for the reaction n + p → d + π° has been made using a neutron beam with kinetic energies up to 720 MeV. The angle and momentum of the deuterons were measured using an analyzing magnet and wire spark chambers with a magnetostrictive readout. The photons from the decaying π° were not detected. The neutron energy was calculated from the measured deuteron angle and momentum. The cross sections are compared to those for the reaction π + + d ⇆ p + p as a test of isotopic spin invariance in strong interactions. The symmetry of the cross sections about 90° is also investigated, and an upper limit of about 1% is placed on the real part of the ratio of isospin-violating to isospin-conserving amplitudes.
EKIN IS 325 TO 675 MEV.
In a new measurement of proton total cross sections at 3.00 GeV/c, the p−d total cross section is found to be lower than a previous measurement by 1.17±0.09 mb. This implies a corresponding new value for the total cross section for I=0 which is 2.18±0.27 mb lower than the previous value. Possible sources of systematic error are discussed.
No description provided.
'1'. '2'. '3'. '5'.
No description provided.
Total cross sections of K± and p¯ on hydrogen and deuterium were measured in a standard transmission experiment with statistical precisions of the order of 0.05-0.25%. Data were obtained in the momentum range 2.45-3.30 GeV/c for K−N, 1.55-3.30 GeV/c for K+N, and 1.00-3.30 GeV/c for p¯N. Cross sections for the pure isotopic spin states are obtained using a procedure for the deuterium data which takes into account Fermi motion and the shadow effect. Evidence for the following new structures was found: Y1*(2455), Y1*(2620), Y0*(2585), Z1*(2150), Z1*(2500), π1*(2290), π1*(2350), and π0*(2375).
?.
?.
?.