We present an analysis of the decay $D^{+} \to K^{-} \pi^+ e^+ \nu_e$ based on data collected by the BESIII experiment at the $\psi(3770)$ resonance. Using a nearly background-free sample of 18262 events, we measure the branching fraction $\mathcal{B}(D^{+} \to K^{-} \pi^+ e^+ \nu_e) = (3.71 \pm 0.03 \pm 0.08)\%$. For $0.8<m_{K\pi}<1.0$ GeV/$c^{2}$ the partial branching fraction is $\mathcal{B}(D^{+} \to K^{-} \pi^+ e^+ \nu_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.07)\%$. A partial wave analysis shows that the dominant $\bar K^{*}(892)^{0}$ component is accompanied by an \emph{S}-wave contribution accounting for $(6.05\pm0.22\pm0.18)\%$ of the total rate and that other components are negligible. The parameters of the $\bar K^{*}(892)^{0}$ resonance and of the form factors based on the spectroscopic pole dominance predictions are also measured. We also present a measurement of the $\bar K^{*}(892)^{0}$ helicity basis form factors in a model-independent way.
The $S$-wave phase $\delta_{S}$ measured in the 12 $m_{K\pi}$ bins with statistical and systematic uncertainties. The systematic uncertainties include: (I) background fraction, (II) background shape, (III) the $\bar K_{0}^{*}(1430)^{0}$ mass and width, (IV) additional resonances, (V) tracking efficiency correction, (VI) PID efficiency correction.
Average form-factor products in the $K^{*}$-dominated region.
We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at $\sqrt{s} = 500~\text{GeV}$ by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse momentum dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the non-universality of the Sivers function, fundamental to our understanding of QCD.
$P_{T}$ Recoil distribution of events simulated with PYTHIA 6.4 and reconstructed before and after the boson's PT correction has been applied.
Estimated background contributions for the $W^+ -> ev$ data yields.
Estimated background contributions for the $W^- -> ev$ data yields.
A comprehensive study on the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande water Cherenkov detector is presented in this paper. The energy and azimuthal spectra of the atmospheric ${\nu}_e+{\bar{\nu}}_e$ and ${\nu}_{\mu}+{\bar{\nu}}_{\mu}$ fluxes are measured. The energy spectra are obtained using an iterative unfolding method by combining various event topologies with differing energy responses. The azimuthal spectra depending on energy and zenith angle, and their modulation by geomagnetic effects, are also studied. A predicted east-west asymmetry is observed in both the ${\nu}_e$ and ${\nu}_{\mu}$ samples at 8.0 {\sigma} and 6.0 {\sigma} significance, respectively, and an indication that the asymmetry dipole angle changes depending on the zenith angle was seen at the 2.2 {\sigma} level. The measured energy and azimuthal spectra are consistent with the current flux models within the estimated systematic uncertainties. A study of the long-term correlation between the atmospheric neutrino flux and the solar magnetic activity cycle is also performed, and a weak indication of a correlation was seen at the 1.1 {\sigma} level, using SK I-IV data spanning a 20 year period. For particularly strong solar activity periods known as Forbush decreases, no theoretical prediction is available, but a deviation below the typical neutrino event rate is seen at the 2.4 {\sigma} level.
Electron neutrino flux measured by SK I-IV data. Error written in percentage including both statistical and systematic uncertainties.
Muon neutrino flux measured by SK I-IV data. Error written in percentage including both statistical and systematic uncertainties.
We present a determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ using the decay $B\to D\ell\nu_\ell$ ($\ell=e,\mu$) based on 711 fb$^{-1}$ of $e^+e^-\to \Upsilon(4S)$ data recorded by the Belle detector and containing $772 \times 10^6$ $B\bar{B}$ pairs. One $B$ meson in the event is fully reconstructed in a hadronic decay mode while the other, on the signal side, is partially reconstructed from a charged lepton and either a $D^+$ or $D^0$ meson in a total of 23 hadronic decay modes. The isospin-averaged branching fraction of the decay $B\to D\ell\nu_\ell$ is found to be $\mathcal{B}(B^0 \to D^- \ell^+ \nu_{\ell})=(2.31\pm 0.03(\mathrm{stat})\pm 0.11(\mathrm{syst}))\%$. Analyzing the differential decay rate as a function of the hadronic recoil with the parameterization of Caprini, Lelouch and Neubert and using the form-factor prediction $\mathcal{G}(1)=1.0541\pm 0.0083$ calculated by FNAL/MILC, we obtain $\eta_\mathrm{EW}|V_{cb}|=(40.12\pm 1.34)\times 10^{-3}$, where $\eta_\mathrm{EW}$ is the electroweak correction factor. Alternatively, assuming the model-independent form-factor parameterization of Boyd, Grinstein and Lebed and using lattice QCD data from the FNAL/MILC and HPQCD collaborations, we find $\eta_\mathrm{EW}|V_{cb}|=(41.10 \pm 1.14)\times 10^{-3}$.
The values of $\Delta\Gamma_i/\Delta w$ with the statistical and systematic uncertainties in the ${B^+ \to \bar{D}^0 e^+ \nu_{e}}, {B^+ \to \bar{D}^0 \mu^+ \nu_{\mu}}, {B^0 \to D^- e^+ \nu_{e}},$ and ${B^0 \to D^- \mu^+ \nu_{\mu}}$ sub-samples. The recoil variable, $w$, is defined as the product of the 4-velocities of the $B$ and $D$ mesons. The value of $w_\rm{max}$ is 1.59209 for the sub-samples with a charged $B$ meson and 1.58901 for the sub-samples with a neutral $B$ meson. The $\Delta\Gamma_i/\Delta w$ results are statistically uncorrelated amongst bins and samples. The systematic correlations between bins and samples are given in the file SubsampleResults.csv of the arXiv source.
The values of $\Delta\Gamma_i/\Delta w$ obtained in different bins of $w$ after combination of the ${B^+ \to \bar{D}^0 e^+ \nu_{e}}, {B^+ \to \bar{D}^0 \mu^+ \nu_{\mu}}, {B^0 \to D^- e^+ \nu_{e}},$ and ${B^0 \to D^- \mu^+ \nu_{\mu}}$ sub-samples. The value of $w_\rm{max} = 1.59055$ is the average of the values for charged and neutral $B$ mesons.
The correlation matrix of the systematic error. The value of $w_\rm{max} = 1.59055$ is the average of the values for charged and neutral $B$ mesons.
In an analysis of a 2.92~fb$^{-1}$ data sample taken at 3.773~GeV with the BESIII detector operated at the BEPCII collider, we measure the absolute decay branching fractions to be $\mathcal B(D^0 \to K^-e^+\nu_e)=(3.505\pm 0.014 \pm 0.033)\%$ and $\mathcal B(D^0 \to \pi^-e^+\nu_e)=(0.295\pm 0.004\pm 0.003)\%$. From a study of the differential decay rates we obtain the products of hadronic form factor and the magnitude of the CKM matrix element $f_{+}^K(0)|V_{cs}|=0.7172\pm0.0025\pm 0.0035$ and $f_{+}^{\pi}(0)|V_{cd}|=0.1435\pm0.0018\pm 0.0009$. Combining these products with the values of $|V_{cs(d)}|$ from the SM constraint fit, we extract the hadronic form factors $f^K_+(0) = 0.7368\pm0.0026\pm 0.0036$ and $f^\pi_+(0) = 0.6372\pm0.0080\pm 0.0044$, and their ratio $f_+^{\pi}(0)/f_+^{K}(0)=0.8649\pm 0.0112\pm 0.0073$. These form factors and their ratio are used to test unquenched Lattice QCD calculations of the form factors and a light cone sum rule (LCSR) calculation of their ratio. The measured value of $f_+^{K(\pi)}(0) |V_{cs(d)}|$ and the lattice QCD value for $f^{K(\pi)}_+(0)$ are used to extract values of the CKM matrix elements of $|V_{cs}|=0.9601 \pm 0.0033 \pm 0.0047 \pm 0.0239$ and $|V_{cd}|=0.2155 \pm 0.0027 \pm 0.0014 \pm 0.0094$, where the third errors are due to the uncertainties in lattice QCD calculations of the form factors. Using the LCSR value for $f_+^\pi(0)/f_+^K(0)$, we determine the ratio $|V_{cd}|/|V_{cs}|=0.238\pm 0.004\pm 0.002\pm 0.011$, where the third error is from the uncertainty in the LCSR normalization. In addition, we measure form factor parameters for three different theoretical models that describe the weak hadronic charged currents for these two semileptonic decays. All of these measurements are the most precise to date.
Summary of the range of each $q^2$ bin, the number of the observed events $N_{\rm observed}$, the number of produced events $N_{\rm produced}$, and the partial decay rate $\Delta\Gamma$ in each $q^2$ bin for $D^0\to K^-e^+\nu_e$ decays.
Summary of the range of each $q^2$ bin, the number of the observed events $N_{\rm observed}$, the number of produced events $N_{\rm produced}$, and the partial decay rate $\Delta\Gamma$ in each $q^2$ bin for $D^0\to \pi^-e^+\nu_e$ decays.
A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair (ll gamma). The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range 120 < m[ll gamma] < 150 GeV, and limits have been derived for the Higgs boson production cross section times branching fraction for the decay H to gamma* gamma to ll gamma, where the dilepton invariant mass is less than 20 GeV. For a Higgs boson with m[H] = 125 GeV, a 95% confidence level (CL) exclusion observed (expected) limit is 6.7 (5.9 +2.8/-1.8) times the standard model prediction. Additionally, an upper limit at 95% CL on the branching fraction of H to J/Psi gamma for the 125 GeV Higgs boson is set at 1.5E-3.
The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.
The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.
The 95% CL exclusion limit, as a function of the mass hypothesis, $m_H$ , on $\sigma/\sigma_{SM}$, the cross section times the branching fraction of a Higgs boson decaying into a photon and a lepton pair with $m_{\ell\ell}$ < 20 GeV, divided by the SM value.
Using data samples collected at center of mass energies of $\sqrt{s}$ = 4.009, 4.226, 4.257, 4.358, 4.416 and 4.599 GeV with the BESIII detector operating at the BEPCII storage ring, we search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$. No signal is observed, and upper limits on the cross section $\sigma(e^{+}e^{-}\rightarrow J/\psi \eta \pi^{0})$ at the 90\% confidence level are determined to be 3.6, 1.7, 2.4, 1.4, 0.9 and 1.9 pb, respectively.
Results on $e^{+}e^{-}\rightarrow J/\psi\eta\pi^{0}$. Listed in the table are the integrated luminosity $\cal{L}$, radiative correction factor (1+$\delta^{r}$) taken from QED calculation assuming the $Y(4260)$ cross section follows a Breit$-$Wigner line shape, vacuum polarization factor (1+$\delta^{v}$), average efficiency ($\epsilon^{ee}{\cal B}^{ee}$ + $\epsilon^{\mu\mu}{\cal B}^{\mu\mu}$), number of observed events $N^\text{obs}$, number of estimated background events $N^\text{bkg}$, the efficiency corrected upper limits on the number of signal events $N^\text{up}$, and upper limits on the Born cross section $\sigma^\text{Born}_\text{UL}$ (at the 90 $\%$ C.L.) at each energy point.
We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^\pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass energies of $\sqrt{s}$=500 and 510~GeV. These asymmetries allow direct access to the anti-quark polarized parton distribution functions due to the parity-violating nature of the $W$-boson coupling to quarks and anti-quarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb$^{-1}$, which exceeds previous PHENIX published results by a factor of more than 27. These high $Q^2$ data provide an important addition to our understanding of anti-quark parton helicity distribution functions.
Longitudinal single-spin asymmetries, $A_L$, for the 2011 and 2012 data sets (combined) spanning the entire $\eta$ range of PHENIX ($\left|\eta\right|<0.35$), for the 2013 data set separated into two $\eta$ bins, and for the combined 2011-2013 data sets.
We report the first observation of the Dalitz decay $\eta' \to \gamma e^+e^-$, based on a data sample of 1.31 billion $J/\psi$ events collected with the BESIII detector. The $\eta'$ mesons are produced via the $J/\psi \to \gamma \eta'$ decay process. The ratio $\Gamma(\eta' \to \gamma e^+ e^-)/\Gamma(\eta'\to\gamma\gamma)$ is measured to be $(2.13\pm0.09(\text{stat.})\pm0.07(\text{sys.}))\times10^{-2}$. This corresponds to a branching fraction ${\cal B}(\eta' \to \gamma e^+e^-)= (4.69 \pm0.20(\text{stat.})\pm0.23(\text{sys.}))\times10^{-4}$. The transition form factor is extracted and different expressions are compared to the measured dependence on the $e^+e^-$ invariant mass. The results are consistent with the prediction of the Vector Meson Dominance model.
Fitted ($n^{\text{obs}}_i$) and efficiency-corrected ($n^{\text{corr}}_i$) signal yields for the eight $M(e^+e^-)$ bins, and ratios ($r_i$). The uncertainties are statistical only.
Values of $|F|^2$ in each $M(e^+e^-)$ bin.
We report on measurements of dielectron ($e^+e^-$) production in Au$+$Au collisions at a center-of-mass energy of 200 GeV per nucleon-nucleon pair using the STAR detector at RHIC. Systematic measurements of the dielectron yield as a function of transverse momentum ($p_{\rm T}$) and collision centrality show an enhancement compared to a cocktail simulation of hadronic sources in the low invariant-mass region ($M_{ee}<$ 1 GeV/$c^2$). This enhancement cannot be reproduced by the $\rho$-meson vacuum spectral function. In minimum-bias collisions, in the invariant-mass range of 0.30 $-$ 0.76 GeV/$c^2$, integrated over the full $p_{\rm T}$ acceptance, the enhancement factor is 1.76 $\pm$ 0.06 (stat.) $\pm$ 0.26 (sys.) $\pm$ 0.29 (cocktail). The enhancement factor exhibits weak centrality and $p_{\rm T}$ dependence in STAR's accessible kinematic regions, while the excess yield in this invariant-mass region as a function of the number of participating nucleons follows a power-law shape with a power of 1.44 $\pm$ 0.10. Models that assume an in-medium broadening of the $\rho$ meson spectral function consistently describe the observed excess in these measurements. Additionally, we report on measurements of $\omega$ and $\phi$-meson production through their $e^+e^-$ decay channel. These measurements show good agreement with Tsallis Blast-Wave model predictions as well as, in the case of the $\phi$-meson, results through its $K^+K^-$ decay channel. In the intermediate invariant-mass region (1.1$<M_{ee}<$ 3 GeV/$c^2$), we investigate the spectral shapes from different collision centralities. Physics implications for possible in-medium modification of charmed hadron production and other physics sources are discussed.
Estimated electron purity vs. momentum in 200 GeV Au + Au collisions.
Acceptance correction factor for unlike-sign and like-sign pair difference from 200 GeV Au+Au minimum-bias collisions.
Ratio of the same-event like-sign to the mixed event unlike-sign distributions.