Measurements of double-helicity asymmetries in inclusive $J/\psi$ production in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 94 (2016) 112008, 2016.
Inspire Record 1467456 DOI 10.17182/hepdata.82575

We report the double helicity asymmetry, $A_{LL}^{J/\psi}$, in inclusive $J/\psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $\sqrt{s}=510$ GeV longitudinally polarized $p

1 data table

$A_{LL}^{J/\psi}$ as a function of $p_T$ or $|y|$. $N_{J/\psi}^{2\sigma}$ is the $J/\psi$ counting within its $2\sigma$ mass window. The column of Type A systematic uncertainties are a statistically weighted quadratic combination of the background fraction and run grouping uncertainties. $\Delta A_{LL}$ (Rel. Lumi.) is the global systematic uncertainty from relative luminosity measurements. $\Delta A_{LL}$ (Polarization) is the systematic uncertainty from the beam polarization measurement: a zero indicates an uncertainty $< 0.001$.


Centrality dependence of inclusive J/$\psi$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 11 (2015) 127, 2015.
Inspire Record 1380193 DOI 10.17182/hepdata.69212

We present a measurement of inclusive J/$\psi$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. The measurement is performed with the ALICE detector down to zero transverse momentum, $p_{\rm T}$, in the backward ($-4.46 < y_{\rm cms} < -2.96$) and forward ($2.03 < y_{\rm cms} < 3.53$) rapidity intervals in the dimuon decay channel and in the mid-rapidity region ($-1.37 < y_{\rm cms} < 0.43$) in the dielectron decay channel. The backward and forward rapidity intervals correspond to the Pb-going and p-going direction, respectively. The $p_{\rm T}$-differential J/$\psi$ production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average $p_{\rm T}$ and $p^2_{\rm T}$ values. The nuclear modification factor, $Q_{\rm pPb}$, is presented as a function of centrality for the three rapidity intervals, and, additionally, at backward and forward rapidity, as a function of $p_{\rm T}$ for several centrality classes. At mid- and forward rapidity, the J/$\psi$ yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. The degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing $p_{\rm T}$ of the J/$\psi$. At backward rapidity, the $Q_{\rm pPb}$ is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions.

11 data tables

Differential cross sections dsigma_JPsi/dydpt as function of pt at backward (-4.46<y_cms<-2.96) centre-of-mass rapidity. The first uncertainty is statistical, the second and third ones are the systematic uncertainties. The third uncertainty is fully correlated over pT.

Differential cross sections d^2sigma^cent_JPsi/dydpt as function of pt for six centrality classes at forward (2.03<y_cms<3.53) centre-of-mass rapidity. The first uncertainty is statistical, the second and third ones are the systematic uncertainties. The third uncertainty is fully correlated over pT.

Differential cross sections dsigma^cent_JPsi/dy for four centrality classes at mid-rapidity (-1.37<y_cms<0.43). The first uncertainty is statistical, the second and third ones are the systematic uncertainties. The third uncertainty is fully correlated over centrality.

More…

Measurement of quarkonium production at forward rapidity in pp collisions at sqrt{s}= 7 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Abramyan, Armenuhi ; Adam, Jaroslav ; et al.
Eur.Phys.J.C 74 (2014) 2974, 2014.
Inspire Record 1285950 DOI 10.17182/hepdata.65214

The inclusive production cross sections at forward rapidity of J/$\psi$, $\psi$(2S), $\Upsilon$(1S) and $\Upsilon$(2S) are measured in pp collisions at $\sqrt{s} = 7$ TeV with the ALICE detector at the LHC. The analysis is based in a data sample corresponding to an integrated luminosity of 1.35 pb$^{-1}$. Quarkonia are reconstructed in the dimuon-decay channel and the signal yields are evaluated by fitting the $\mu^+\mu^-$ invariant mass distributions. The differential production cross sections are measured as a function of the transverse momentum $p_{\rm T}$ and rapidity $y$, over the ranges $0 < p_{\rm T} < 20$ GeV/$c$ for J/$\psi$, $0 < p_{\rm T} < 12$ GeV/$c$ for all other resonances and for $2.5 < y < 4$. The measured cross sections integrated over $p_{\rm T}$ and $y$, and assuming unpolarized quarkonia, are: $\sigma_{J/\psi} = 6.69 \pm 0.04 \pm 0.63$ $\mu$b, $\sigma_{\psi^{\prime}} = 1.13 \pm 0.07 \pm 0.14$ $\mu$b, $\sigma_{\Upsilon{\rm(1S)}} = 54.2 \pm 5.0 \pm 6.7$ nb and $\sigma_{\Upsilon{\rm (2S)}} = 18.4 \pm 3.7 \pm 2.2$ nb, where the first uncertainty is statistical and the second one is systematic. The results are compared to measurements performed by other LHC experiments and to theoretical models.

14 data tables

Differential production cross sections of J/psi as a function of pT.

Differential production cross sections of J/psi as a function of rapidity.

integrated production cross section of J/psi.

More…

Measurement of J/psi and psi(2S) prompt double-differential cross sections in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 114 (2015) 191802, 2015.
Inspire Record 1345023 DOI 10.17182/hepdata.66886

The double-differential cross sections of promptly produced J/psi and psi(2S) mesons are measured in pp collisions at sqrt(s) = 7 TeV, as a function of transverse momentum pt and absolute rapidity abs(y). The analysis uses J/psi and psi(2S) dimuon samples collected by CMS, corresponding to integrated luminosities of 4.55 and 4.90 inverse femtobarns, respectively. The results are based on a two-dimensional analysis of the dimuon invariant mass and decay length, and extend to pt = 120 and 100 GeV for the J/psi and psi(2S), respectively, when integrated over the interval abs(y) < 1.2. The ratio of the psi(2S) to J/psi cross sections is also reported for abs(y) < 1.2, over the range 10 < pt < 100 GeV. These are the highest pt values for which the cross sections and ratio have been measured.

5 data tables

J/psi double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.

psi(2S) double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.

J/psi double-differential cross section times branching fraction and the corresponding scaling factors to obtain the cross sections for different polarization scenarios (azimuthal polarization parameter in the center of mass helicity frame lambda_theta^HX = +1, -1, +0.1) as a function of pT for |y| < 1.2.

More…

Measurement of charm and beauty production at central rapidity versus charged-particle multiplicity in proton-proton collisions at $\mathbf{\sqrt{{\textit s}}}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 09 (2015) 148, 2015.
Inspire Record 1366028 DOI 10.17182/hepdata.69529

Prompt D meson and non-prompt J/$\psi$ yields are studied as a function of the multiplicity of charged particles produced in inelastic proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=7$ TeV. The results are reported as a ratio between yields in a given multiplicity interval normalised to the multiplicity-integrated ones (relative yields). They are shown as a function of the multiplicity of charged particles normalised to the average value for inelastic collisions (relative charged-particle multiplicity). D$^0$, D$^+$ and D$^{*+}$ mesons are measured in five $p_{\rm T}$ intervals from 1 to 20 GeV/$c$ and for $|y|<0.5$ via their hadronic decays. The D-meson relative yield is found to increase with increasing charged-particle multiplicity. For events with multiplicity six times higher than the average multiplicity of inelastic collisions, a yield enhancement of a factor about 15 relative to the multiplicity-integrated yield in inelastic collisions is observed. The yield enhancement is independent of transverse momentum within the uncertainties of the measurement. The D$^0$-meson relative yield is also measured as a function of the relative multiplicity at forward pseudorapidity. The non-prompt J/$\psi$, i.e. the B hadron, contribution to the inclusive J/$\psi$ production is measured in the di-electron decay channel at central rapidity. It is evaluated for $p_{\rm T}>1.3$ GeV/$c$ and $|y|<0.9$, and extrapolated to $p_{\rm T}>0$. The fraction of non-prompt J/$\psi$ in the inclusive J/$\psi$ yields shows no dependence on the charged-particle multiplicity at central rapidity. Charm and beauty hadron relative yields exhibit a similar increase with increasing charged-particle multiplicity. The measurements are compared to PYTHIA 8, EPOS 3 and percolation calculations.

7 data tables

Average of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons relative yields for the sum of particle and antiparticle in several multiplicity and PT intervals for PP collisions at $\sqrt{s}=7$ TeV as a function of the relative charged-particle multiplicity at central rapidity. The values are reported together with their uncertainties, which are quoted in the the order: statistical, systematic and feed-down contribution uncertainties. The yields reported here are per inelastic event.

Average of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons relative yields for the sum of particle and antiparticle in several multiplicity and PT intervals for PP collisions at $\sqrt{s}=7$ TeV as a function of the relative charged-particle multiplicity at central rapidity. The values are reported together with their uncertainties, which are quoted in the the order: statistical, systematic and feed-down contribution uncertainties. The yields reported here are not corrected by the trigger selection efficiency, they are normalised to the visible cross section.

D$^{0}$-meson relative yields for the sum of particle and antiparticle in several multiplicity and PT intervals for pp collisions at $\sqrt{s}=7$ TeV as a function of the relative average multiplicity in the V0 detector, $N_{V0} \big/ \langle N_{V0} \rangle$. The yields reported here are normalised to the inelastic cross section.

More…

Version 2
Measurement of forward $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=13$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 10 (2015) 172, 2015.
Inspire Record 1391511 DOI 10.17182/hepdata.70048

The production of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV is studied with the \lhcb detector. Cross-section measurements are performed as a function of the transverse momentum $p_\mathrm{T}$ and the rapidity $y$ of the $J/\psi$ meson in the region $p_\mathrm{T}<14\mathrm{GeV}/c$ and $2.0<y<4.5$, for both prompt $J/\psi$ mesons and $J/\psi$ mesons from $b$-hadron decays. The production cross-sections integrated over the kinematic coverage are $15.03\pm 0.03\pm 0.94$ $\mu$b for prompt $J/\psi$ and $2.25\pm 0.01\pm 0.14$ $\mu$b for $J/\psi$ from $b$-hadron decays, assuming zero polarization of the $J/\psi$ meson. The first uncertainties are statistical and the second systematic. The cross-section reported for $J/\psi$ mesons from $b$-hadron decays is used to extrapolate to a total $b\bar{b}$ cross-section. The ratios of the cross-sections with respect to $\sqrt{s}=8$ TeV are also determined.

26 data tables

Double differential cross-section for prompt $J/\psi$ mesons as a function of $p_\perp$ in bins of $y$. The first uncertainties are statistical, the second are the correlated systematic uncertainties shared between bins and the last are the uncorrelated systematic uncertainties.

Double differential cross-section for prompt $J/\psi$ mesons as a function of $p_\perp$ in bins of $y$. The first uncertainties are statistical, the second are the correlated systematic uncertainties shared between bins and the last are the uncorrelated systematic uncertainties.

Double differential cross-section for $J/\psi$-from-$b$ mesons as a function of $p_\perp$ in bins of $y$. The first uncertainties are statistical, the second are the correlated systematic uncertainties shared between bins and the last are the uncorrelated systematic uncertainties.

More…

J/psi production at high transverse momentum in p+p and Cu+Cu collisions at \sNN=200GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 041902, 2009.
Inspire Record 817120 DOI 10.17182/hepdata.55733

The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.

8 data tables

J/psi differential production cross section in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

More…

J / psi production versus transverse momentum and rapidity in p+p collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 232002, 2007.
Inspire Record 731611 DOI 10.17182/hepdata.57311

J/Psi production in p+p collisions at sqrt(s) = 200 GeV has been Measured in the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over a rapidity range of -2.2 < y < 2.2 and a transverse momentum range of 0 < pT < 9 GeV/c. The statistics available allow a detailed measurement of both the pT and rapidity distributions and are sufficient to constrain production models. The total cross section times branching ratio determined for J/Psi production is B_{ll} sigma_pp^J/psi = 178 +/- 3(stat) +/- 53(syst) +/- 18(norm) nb.

6 data tables

J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at mid rapidity : -0.35<y<0.35.

J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at forward rapidities : absolute value of y belongs to [1.2;2.2].

Mean PT^2 value at mid rapidities : -0.35<y<0.35 The mean PT is obtained with a phenomonological fit of the J/PSI distribution in PT of the form (1/(2*PI*PT))*D(SIG)/DPT = A ( 1+(PT/B)^2)^-6 .The systematic error includes the incertainty from the maximum shape deviation permitted by the point-to-point correlated errors and from allowing the exponent of the fit fonctionto be a free parameter.

More…

Rapidity and transverse momentum dependence of inclusive J/psi production in pp collisions at sqrt(s) = 7 TeV

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 704 (2011) 442-455, 2011.
Inspire Record 897764 DOI 10.17182/hepdata.57452

The ALICE experiment at the LHC has studied inclusive J/$\psi$ production at central and forward rapidities in pp collisions at $\sqrt{s} = 7$ TeV. In this Letter, we report on the first results obtained detecting the J/$\psi$ through its dilepton decay into $e^+e^-$ and $\mu^+\mu^-$ pairs in the rapidity range |y|<0.9 and 2.5<y<4, respectively, and with acceptance down to zero $p_{\rm T}$. In the dielectron channel the analysis was carried out on a data sample corresponding to an integrated luminosity $L_{\rm int}$ = 5.6 nb$^{-1}$ and the number of signal events is $N_{J/\psi}=352 \pm 32$ (stat.) $\pm$ 28 (syst.); the corresponding figures in the dimuon channel are $L_{\rm int}$ = 15.6 nb$^{-1}$ and $N_{J/\psi} = 1924 \pm 77$ (stat.) $\pm$ 144(syst.). The measured production cross sections are $\sigma_{J/\psi}$ (|y|<0.9) = 12.4 $\pm$ 1.1 (stat.) $\pm$ 1.8 (syst.) + 1.8 -2.7 (syst.pol.) $\mu$b and $\sigma_{J/\psi}$ (2.5<y<4) = 6.31 $\pm$ 0.25 (stat.) $\pm$ 0.76 (syst.) +0.95 -1.96 (syst.pol.) $\mu$b. The differential cross sections, in transverse momentum and rapidity, of the J/$\psi$ were also measured.

5 data tables

Double differential J/PSI cross section from the di-electron channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one. The last four columns are the errors considering. a +1 polarization in the Collins-Soper frame, a -1 polarization in the Collins-Soper frame, a +1 polarization in the Helicity frame and a -1 polarization in the Helicity frame, respectively.

Differential J/PSI cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one. The last four columns are the errors (in MUB/GEV) considering a +1 polarization in the Collins-Soper frame, a -1 polarization in the Collins-Soper frame, a +1 polarization in the Helicity frame and a -1 polarization in the Helicity frame, respectively.

Differential J/PSI cross section from the di-electron and di-muon channel as a function of rapidity, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one. The last four columns are the errors (in MUB/GEV) considering. Data in the first point of this table updated from the erratum.

More…

Cold Nuclear Matter Effects on J/Psi as Constrained by Deuteron-Gold Measurements at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 77 (2008) 024912, 2008.
Inspire Record 768530 DOI 10.17182/hepdata.57373

All of the experimental data points presented in the original paper are correct and unchanged (including statistical and systematic uncertainties). However, herein we correct a comparison between the experimental data and a theoretical picture, because we discovered a mistake in the code used. All of the most probable sigma_breakup values differ by less than 0.4 mb from those originally presented. However, the one standard deviation uncertainties (that include contributions from both the statistical and systematic uncertainties on the experimental data points) are approximately 30-60% larger than originally reported. We give a table of the new comparison results and corrected versions of Figs. 8-11 of the original paper and we note that no correction is needed for results from the data-driven method in Fig. 13.

22 data tables

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 3 bins of rapidity.

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus rapidity in D+AU collisions, over 5 bins of rapidity.

J/PSI invariant (1/(2PI*PT))*D2(N)/DPT/DYRAP versus PT at backward rapidity (-2.2<y<-1.2) in D+AU collisions.

More…