The measurements of the Higgs boson (H) production cross sections performed by the CMS Collaboration in the four-lepton (4$\ell$, $\ell$=e,$\mu$) final state at a center-of-mass energy $\sqrt{s}$ = 13.6 TeV are presented. These measurements are based on data collected with the CMS detector at the CERN LHC in 2022, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. Cross sections are measured in a fiducial region closely matching the experimental acceptance, both inclusively and differentially, as a function of the transverse momentum and the absolute value of the rapidity of the four-lepton system. The H $\to$ ZZ $\to$ 4$\ell$ inclusive fiducial cross section is measured to be 2.89$^{+0.53}_{-0.49}$ (stat) $^{+0.29}_{-0.21}$ (syst) fb, in agreement with the standard model expectation of 3.09$^{+0.27}_{-0.24}$ fb.
Postfit reconstructed distribution of the 4-lepton invariant mass in the 70 < m4l < 350 GeV mass range.
Postfit reconstructed distribution of the 4-lepton invariant mass in the 105< m4l < 160 GeV mass range.
Measured inclusive fiducial H->ZZ->4l cross section in the various final states at 13.6 TeV.
Measurements of the differential branching fraction and angular moments of the decay $B^0 \to K^+ \pi^- \mu^+ \mu^-$ in the $K^+\pi^-$ invariant mass range $1330
: Differential branching fraction of $B^0 \to K^+ \pi^- \mu^+ \mu^-$ in bins of $q^2$ for the range $1330<m(K^+ \pi^-)<1530~MeV/c^2$. The first uncertainty is statistical, the second systematic and the third due to the uncertainty on the $B^0 \to J/\psi K^*(892)^0$ and $J/\psi \to \mu\mu$ branching fractions.
Measurement of the normalised moments, $\overline{\Gamma}_{i}$, of the decay $B^0 \to K^+ \pi^- \mu^+ \mu^-$ in the range $1.1< q^2<6.0 GeV^2/c^4$ and $1330<m(K^+ \pi^-)<1530~MeV/c^2$. The first uncertainty is statistical and the second systematic.
Full covariance matrix of the normalised moments. The statistical and systematic uncertainties are combined.
Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.
Best fit values of $\sigma_i \cdot \mathrm{B}^f$ for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.
Best fit values of $\sigma_i \cdot \mathrm{B}^f$ relative to their SM prediction for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.
Best fit values of $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$ from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The values involving cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.
An angular analysis of the $B^{0}\rightarrow K^{*0}(\rightarrow K^{+}\pi^{-})\mu^{+}\mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0\,{\mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C\!P$-averaged observables and $C\!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}\pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit.
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
CP-asymmetric angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
Associated production of bottomonia and open charm hadrons in $pp$ collisions at $\sqrt{s}=7$ and $8$TeV is observed using data corresponding to an integrated luminosity of 3$fb^{-1}$ accumulated with the LHCb detector. The observation of five combinations, $\Upsilon(1S)D^0$, $\Upsilon(2S)D^0$, $\Upsilon(1S)D^+$, $\Upsilon(2S)D^+$ and $\Upsilon(1S)D^+_{s}$, is reported. Production cross-sections are measured for $\Upsilon(1S)D^0$ and $\Upsilon(1S)D^+$ pairs in the forward region. The measured cross-sections and the differential distributions indicate the dominance of double parton scattering as the main production mechanism. This allows a precise measurement of the effective cross-section for double parton scattering.
Normalized differential cross-section $\frac{1}{\sigma}\frac{ \mathrm{d}\sigma(\Upsilon(1S)D^0)}{\mathrm{d} p_T(\Upsilon(1S))}$ for $2<y(\Upsilon(1S))<4.5$, $2<y(D^0)<4.5$, $p_T(D^0)>1$ GeV/$c$. Only statistical uncertainties are quoted as systematic uncertainties are found to be negligible. The distribution is normalized to unity.
Normalized differential cross-section $\frac{1}{\sigma}\frac{ \mathrm{d}\sigma(\Upsilon(1S)D^+)}{\mathrm{d} p_T(\Upsilon(1S))}$ for $2<y(\Upsilon(1S))<4.5$, $2<y(D^+)<4.5$, $p_T(D^+)>1$ GeV/$c$. Only statistical uncertainties are quoted as systematic uncertainties are found to be negligible. The distribution is normalized to unity.
Normalized differential cross-section $\frac{1}{\sigma}\frac{ \mathrm{d}\sigma(\Upsilon(1S)D^0)}{\mathrm{d} p_T(D^0)}$ for $2<y(\Upsilon(1S))<4.5$, $2<y(D^0)<4.5$, $p_T(D^0)>1$ GeV/$c$. Only statistical uncertainties are quoted as systematic uncertainties are found to be negligible. The distribution is normalized to unity.
The production of $\Upsilon$ mesons in $pp$ collisions at $\sqrt=7$ and $8\,\mathrm{TeV}$ is studied with the LHCb detector using data samples corresponding to an integrated luminosity of $1\,\mathrm{fb}^{-1}$ and $2\,\mathrm{fb}^{-1}$ respectively. The production cross-sections and ratios of cross-sections are measured as functions of the meson transverse momentum $p_T$ and rapidity $y$, for $p_T<30\,\mathrm{GeV}/c$} and $2.0
Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.
Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.
Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)].
The product of the $\Lambda_b^0$ ($\overline{B}^0$) differential production cross-section and the branching fraction of the decay $\Lambda_b^0\rightarrow J/\psi pK^-$ ($\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0$) is measured as a function of the beauty hadron transverse momentum, $p_{\rm T}$, and rapidity, $y$. The kinematic region of the measurements is $p_{\rm T}<20~{\rm GeV}/c$ and $2.0
Products of $\Lambda_b^0$ production cross-sections and the branching fraction $\mathcal{B}(\Lambda_b^0 \rightarrow J\psi pK^-)$ in bins of $p_\rm{T}$ and $y$ in the 2011 data sample.
Products of $\Lambda_b^0$ production cross-sections and the branching fraction $\mathcal{B}(\Lambda_b^0 \rightarrow J\psi pK^-)$ in bins of $p_\rm{T}$ and $y$ in the 2012 data sample.
Products of $\overline{B}^0$ production cross-sections and $\mathcal{B}(\overline{B}^0 \rightarrow J\psi \overline{K}^{*0})$ in bins of $p_\rm{T}$ and $y$ in the 2011 data sample.
A study is presented of central exclusive production of $\Upsilon(nS)$ states, where the $\Upsilon(nS)$ resonances decay to the $\mu^+\mu^-$ final state, using $pp$ collision data recorded by the LHCb experiment. The cross-section is measured in the rapidity range $2
Production cross-section for the $\Upsilon(1S)$ resonance in ranges of $\Upsilon(1S)$ rapidity, where the muons are required to lie in the pseudorapidity range $2 < \eta(\mu^{\pm}) < 4.5$. The first uncertainties are statistical and the second ones are systematic.
Differential production cross-section for $\Upsilon(1S)$, where the data have been corrected for the effect of the LHCb geometrical acceptance. The statistical and systematic uncertainties are combined in quadrature.
The associated production of a $W$ boson with a jet originating from either a light parton or heavy-flavor quark is studied in the forward region using proton-proton collisions. The analysis uses data corresponding to integrated luminosities of 1.0 and $2.0\,{\rm fb}^{-1}$ collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, respectively. The $W$ bosons are reconstructed using the $W\to\mu\nu$ decay and muons with a transverse momentum, $p_{\rm T}$, larger than 20 GeV in the pseudorapidity range $2.0<\eta<4.5$. The partons are reconstructed as jets with $p_{\rm T} > 20$ GeV and $2.2 < \eta < 4.2$. The sum of the muon and jet momenta must satisfy $p_{\rm T} > 20$ GeV. The fraction of $W+$jet events that originate from beauty and charm quarks is measured, along with the charge asymmetries of the $W\!+\!b$ and $W\!+\!c$ production cross-sections. The ratio of the $W+$jet to $Z+$jet production cross-sections is also measured using the $Z\to\mu\mu$ decay. All results are in agreement with Standard Model predictions.
Summary of the results. All results are reported within a fiducial region that requires a jet with $p_\rm{T} > 20$ GeV in the pseudorapidity range $2.2 < \eta < 4.2$, a muon with $p_\rm{T} > 20$ GeV in the pseudorapidity range $2.0 < \eta < 4.5$, $p_\rm{T}(\mu+j) > 20$ GeV, and $\Delta R(\mu, j) > 0.5$. For $Z+$jet events both muons must fulfill the muon requirements and $60 < M(\mu\mu) < 120$ GeV; the $Z+$jet fiducial region does not require $p_\rm{T}(\mu+j) > 20$ GeV.
The production of $\chi_b$ mesons in proton-proton collisions is studied using a data sample collected by the LHCb detector, at centre-of-mass energies of $\sqrt{s}=7$ and $8$ TeV and corresponding to an integrated luminosity of 3.0 fb$^{-1}$. The $\chi_b$ mesons are identified through their decays to $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ using photons that converted to $e^+e^-$ pairs in the detector. The relative prompt production rate of $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ mesons is measured as a function of the $\Upsilon(1S)$ transverse momentum in the $\chi_b$ rapidity range $2.0
Relative production cross section of $\chi_{b2}(1P)$ to $\chi_{b1}(1P)$ mesons in $p_T$ bins of $\Upsilon(1S)$ meson. The first uncertainty is statistical, the second is systematic and the third is due to the uncertainty on the branching fractions.