Showing 6 of 6 results
This article presents a search for a heavy charged Higgs boson produced in association with a top quark and a bottom quark, and decaying into a $W$ boson and a $125$ GeV Higgs boson $h$. The search is performed in final states with one charged lepton, missing transverse momentum, and jets using proton-proton collision data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector during Run 2 of the LHC at CERN. This data set corresponds to a total integrated luminosity of 140 fb$^{-1}$. The search is conducted by examining the reconstructed invariant mass distribution of the $Wh$ candidates for evidence of a localised excess in the charged Higgs boson mass range from $250$ GeV to $3$ TeV. No significant excess is observed and 95% confidence-level upper limits between $2.8$ pb and $1.2$ fb are placed on the production cross-section times branching ratio for charged Higgs bosons decaying into $Wh$.
Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the resolved analysis.
Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the merged analysis.
Product of acceptance and efficiency for pp->tbH(->Wh) as function of the charged Higgs boson mass for the resolved qqbb low-purity signal region.
Product of acceptance and efficiency for pp->tbH(->Wh) as function of the charged Higgs boson mass for the resolved qqbb signal region.
Product of acceptance and efficiency for pp->tbH(->Wh) as function of the charged Higgs boson mass for the resolved lvbb signal region.
Product of acceptance and efficiency for pp->tbH(->Wh) as function of the charged Higgs boson mass for the merged lvbb signal region
Product of acceptance and efficiency for pp->tbH(->Wh) as function of the charged Higgs boson mass for the merged qqbb signal region
Distributions of the mWh observable in the low-purity signal regions of the resolved qqbb 5jex3bex event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
Distributions of the mWh observable in the low-purity signal regions of the resolved qqbb 5jex4bin event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
Distributions of the mWh observable in the low-purity signal regions of the resolved qqbb 6jin3bex event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
Distributions of the mWh observable in the low-purity signal regions of the resolved qqbb 6jin4bin event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
Distributions of the mWh observable in the high-purity signal regions of the resolved qqbb 5jex3bex event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
Distributions of the mWh observable in the high-purity signal regions of the resolved qqbb 5jex4bin event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
Distributions of the mWh observable in the high-purity signal regions of the resolved qqbb 6jin3bex event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
Distributions of the mWh observable in the high-purity signal regions of the resolved qqbb 6jin4bin event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
Distributions of the mWh observable in the signal regions of the resolved lvbb 5jex3bex event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
Distributions of the mWh observable in the signal regions of the resolved lvbb 5jex4bin event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
Distributions of the mWh observable in the signal regions of the resolved lvbb 6jin3bex event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
Distributions of the mWh observable in the signal regions of the resolved lvbb 6jin4bin event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
The mWh distributions in the Low-NN-score SRs of the merged qqbb 0b event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The background prediction is shown after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contributions assuming $m_{H^{\pm}}$ = 900 GeV and $m_{H^{\pm}}$ = 2000 GeV, normalised the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) values of 0.036 pb and 2.7 fb respectively, are shown as dashed histograms.
The mWh distributions in the Low-NN-score SRs of the merged qqbb 1b event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The background prediction is shown after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contributions assuming $m_{H^{\pm}}$ = 900 GeV and $m_{H^{\pm}}$ = 2000 GeV, normalised the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) values of 0.036 pb and 2.7 fb respectively, are shown as dashed histograms.
The mWh distributions in the High-NN-score SRs of the merged qqbb 0b event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The background prediction is shown after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contributions assuming $m_{H^{\pm}}$ = 900 GeV and $m_{H^{\pm}}$ = 2000 GeV, normalised the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) values of 0.036 pb and 2.7 fb respectively, are shown as dashed histograms.
The mWh distributions in the High-NN-score SRs of the merged qqbb 1b event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The background prediction is shown after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contributions assuming $m_{H^{\pm}}$ = 900 GeV and $m_{H^{\pm}}$ = 2000 GeV, normalised the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) values of 0.036 pb and 2.7 fb respectively, are shown as dashed histograms.
The mWh distributions in the Low-NN-score SRs of the merged lvbb 0b event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The background prediction is shown after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contributions assuming $m_{H^{\pm}}$ = 900 GeV and $m_{H^{\pm}}$ = 2000 GeV, normalised the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) values of 0.036 pb and 2.7 fb respectively, are shown as dashed histograms.
The mWh distributions in the Low-NN-score SRs of the merged lvbb 1b event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The background prediction is shown after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contributions assuming $m_{H^{\pm}}$ = 900 GeV and $m_{H^{\pm}}$ = 2000 GeV, normalised the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) values of 0.036 pb and 2.7 fb respectively, are shown as dashed histograms.
The mWh distributions in the Medium-NN-score SRs of the merged lvbb 0b event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The background prediction is shown after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contributions assuming $m_{H^{\pm}}$ = 900 GeV and $m_{H^{\pm}}$ = 2000 GeV, normalised the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) values of 0.036 pb and 2.7 fb respectively, are shown as dashed histograms.
The mWh distributions in the Medium-NN-score SRs of the merged lvbb 1b event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The background prediction is shown after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contributions assuming $m_{H^{\pm}}$ = 900 GeV and $m_{H^{\pm}}$ = 2000 GeV, normalised the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) values of 0.036 pb and 2.7 fb respectively, are shown as dashed histograms.
The mWh distributions in the High-NN-score SRs of the merged lvbb 0b event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The background prediction is shown after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contributions assuming $m_{H^{\pm}}$ = 900 GeV and $m_{H^{\pm}}$ = 2000 GeV, normalised the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) values of 0.036 pb and 2.7 fb respectively, are shown as dashed histograms.
The mWh distributions in the High-NN-score SRs of the merged lvbb 1b event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The background prediction is shown after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contributions assuming $m_{H^{\pm}}$ = 900 GeV and $m_{H^{\pm}}$ = 2000 GeV, normalised the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) values of 0.036 pb and 2.7 fb respectively, are shown as dashed histograms.
Cutflow table for a few selected signal samples after applying the selection requirements of the resolved analysis. At the initial cut stage, all events from the tbH ± → W ± h(→ b b) production process (including those from the fully hadronic decay channel) are considered.
Cutflow table for a few selected signal samples after applying the selection requirements of the merged analysis. At the initial cut stage, all events from the tbH ± → W ± h(→ bb) production process (including those from the fully hadronic decay channel) are considered.
This paper presents a search for supersymmetric particles in models with highly compressed mass spectra, in events consistent with being produced through vector boson fusion. The search uses 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Events containing at least two jets with a large gap in pseudorapidity, large missing transverse momentum, and no reconstructed leptons are selected. A boosted decision tree is used to separate events consistent with the production of supersymmetric particles from those due to Standard Model backgrounds. The data are found to be consistent with Standard Model predictions. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a bino-like neutralino with a mass similar to that of the lightest chargino and second-to-lightest neutralino, both of which are wino-like. Lower limits at 95% confidence level on the masses of next-to-lightest supersymmetric partners in this simplified model are established between 117 and 120 GeV when the lightest supersymmetric partners are within 1 GeV in mass.
Observed and predicted background distributions of the BDT score in $\text{SR}_\text{2j}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.
Observed and predicted background distributions of the BDT score in $\text{SR}_{\geq3\text{j}}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the compressed SUSY simplified model with a bino-like LSP and wino-like NLSPs being considered. These are shown with $\pm1\sigma_\text{exp}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm1\sigma^{\text{SUSY}}_{\text{theory}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the ATLAS searches using the soft lepton signature is illustrated by the blue region while the limit imposed by the LEP experiments is shown in grey.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the compressed SUSY simplified model with a bino-like LSP and wino-like NLSPs being considered. These are shown with $\pm1\sigma_\text{exp}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm1\sigma^{\text{SUSY}}_{\text{theory}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the ATLAS searches using the soft lepton signature is illustrated by the blue region while the limit imposed by the LEP experiments is shown in grey.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the compressed SUSY simplified model with a bino-like LSP and wino-like NLSPs being considered. These are shown with $\pm1\sigma_ ext{exp}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm1\sigma^{ ext{SUSY}}_{ ext{theory}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the ATLAS searches using the soft lepton signature is illustrated by the blue region while the limit imposed by the LEP experiments is shown in grey.
The expected upper limits on the cross-sections at 95% CL for the simplified SUSY model featuring the production of mass-degenerate pairs of wino-like $\widetilde{\chi}_{2}^{0}$ and $\widetilde{\chi}_{1}^{\pm}$ particles in association with at least two jets. The production modes considered are $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm}$, $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}$, $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$, and $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm}$.
The observed upper limits on the cross-sections at 95% CL for the simplified SUSY model featuring the production of mass-degenerate pairs of wino-like $\widetilde{\chi}_{2}^{0}$ and $\widetilde{\chi}_{1}^{\pm}$ particles in association with at least two jets. The production modes considered are $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm}$, $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}$, $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$, and $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm}$.
Truth-level signal acceptances in $\text{SR}_\text{2j}$ with BDT score $\in [0.88, 1.0]$. All of the considered production modes ($\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm}$, $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}$, $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$, and $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm}$) are included. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation. The generator-level selections are the same as the ones at reconstruction level.
Truth-level signal acceptances in $\text{SR}_{\geq\text{3j}}$ with BDT score $\in [0.88, 1.0]$. All of the considered production modes ($\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm}$, $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}$, $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$, and $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm}$) are included. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation. The generator-level selections are the same as the ones at reconstruction level.
Signal efficiencies in $\text{SR}_\text{2j}$ with BDT score $\in [0.88, 1.0]$. All of the considered production modes ($\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm}$, $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}$, $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$, and $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm}$) are included. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. The generator-level selections are the same as the ones at reconstruction level.
Signal efficiencies in $\text{SR}_{\geq\text{3j}}$ with BDT score $\in [0.88, 1.0]$. All of the considered production modes ($\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm}$, $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}$, $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$, and $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm}$) are included. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. The generator-level selections are the same as the ones at reconstruction level.
Event selection cutflows for signal samples with $m(\tilde\chi^0_2) =100~\text{GeV}$ and $\Delta m(\tilde\chi^0_2 / \tilde\chi^\pm_1,\tilde\chi^0_1) = 0.2~\text{GeV}, 1.0~\text{GeV},$ and $5.0~\text{GeV}$. The first number in the column for each mass point corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut. All of the production modes are included. The total cross-section used to obtain the initial number of events ($\sigma$) includes the cuts applied at parton level as described in the main text.
A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton$-$proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the $WZ$+jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.
Observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Expected exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Expected exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRGGWZ-H.
N-1 distribution for $E_{\mathrm{T}}^{\mathrm{miss}}$of observed data and expected background in SRGGSlep-M.
N-1 distribution for $\sum{p_{\mathrm{T}}^\mathrm{jet}}$of observed data and expected background in SRUDD-ge2b.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRLQD.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRSSWZ-H.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRSSSlep-H(loose).
Signal acceptance for SRGGWZ-H signal region from Fig 10(c) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-H signal region from Fig 15(c) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGWZ-M signal region from Fig 10(b) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-M signal region from Fig 15(b) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGWZ-L signal region from Fig 10(a) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-L signal region from Fig 15(a) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-L signal region from Fig 12(a) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-L signal region from Fig 17(a) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-M signal region from Fig 12(b) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-M signal region from Fig 17(b) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-H signal region from Fig 12(c) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-H signal region from Fig 17(c) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRUDD-1b signal region from Fig 14(b) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-1b signal region from Fig 19(b) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-2b signal region from Fig 14(c) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-2b signal region from Fig 19(c) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-ge2b signal region from Fig 14(d) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-ge2b signal region from Fig 19(d) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-ge3b signal region from Fig 14(e) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-ge3b signal region from Fig 19(e) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRLQD signal region from Fig 14(a) in a SUSY scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Signal efficiency for SRLQD signal region from Fig 19(a) in a SUSY scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Signal acceptance for SRSSWZ-L signal region from Fig 11(a) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-L signal region from Fig 16(a) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-ML signal region from Fig 11(b) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-ML signal region from Fig 16(b) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-MH signal region from Fig 11(c) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-MH signal region from Fig 16(c) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-H signal region from Fig 11(d) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-H signal region from Fig 16(d) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-H signal region from Fig 13(d) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-H signal region from Fig 18(d) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-MH signal region from Fig 13(c) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-MH signal region from Fig 18(c) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-L signal region from Fig 13(a) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-L signal region from Fig 18(a) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-ML signal region from Fig 13(b) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-ML signal region from Fig 18(b) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-H(loose) signal region from Fig 13(e) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-H(loose) signal region from Fig 18(e) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-H in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-M in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-L in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-L in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-M in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-H in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-1b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-2b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-ge2b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-ge3b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRLQD in a susy scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2200 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1870 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-L in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-ML in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-MH in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-H in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-H in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-MH in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-L in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-ML in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-H(loose) in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Cross-section upper limits at 95% CL from Fig1(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Cross-section upper limits at 95% CL from Fig1(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Cross-section upper limits at 95% CL from Fig1(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons ($e$ or $\mu$) with the same electric charge, or three leptons. The analysis uses 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and without $R$-parity conservation are considered. In topologies with intermediate states including either $Wh$ or $WZ$ pairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a natural $R$-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for an $R$-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.
Observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
positive one $\sigma$ observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
negative $\sigma$ variation of observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
Observed excluded cross-section at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 8(aux).
Expected exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production.
Observed exclusion limits at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from from Fig 13(a) and from Fig 7 and Fig 10(aux).
Observed excluded cross-section at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 7(aux) and Fig 10(aux).
positive one $\sigma$ observed exclusion limits at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from from Fig 13(a) and from Fig 7 and Fig 10(aux).
negative one $\sigma$ observed exclusion limits at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from from Fig 13(a) and from Fig 7 and Fig 10(aux).
Expected exclusion limits at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production.
Expected exclusion limits at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production.
Expected exclusion limits at 95% CL for the Wh-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region $SR^{bRPV}_{2l-SS}$. in a susy scenario where $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are produced in pairs and decay to all possible allowed bRPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV, tan$\beta$=5. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region $SR^{bRPV}_{3l}$. in a susy scenario where $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are produced in pairs and decay to all possible allowed bRPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV, tan$\beta$=5. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region $SR^{WZ}_{high-m_{T2}}$. The wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Z bosons. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{\pm} _{1}/\tilde{\chi}^{0} _{2})$ = 150 GeV, $m(\tilde{\chi}^{0} _{1})$ = 50 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region $SR^{WZ}_{low-m_{T2}}$. The wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Z bosons. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{\pm} _{1}/\tilde{\chi}^{0} _{2})$ = 150 GeV, $m(\tilde{\chi}^{0} _{1})$ = 50 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the low mass $SR^{RPV}_{2l1b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the medium mass $SR^{RPV}_{2l1b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the low mass $SR^{RPV}_{2l2b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the medium mass $SR^{RPV}_{2l2b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the high mass $SR^{RPV}_{2l2b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the low mass $SR^{RPV}_{2l3b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the medium mass $SR^{RPV}_{2l3b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the high mass $SR^{RPV}_{2l3b}$, where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{0} _{1}/\tilde{\chi}^{0} _{2})$ = 200 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the $SR^{Wh}_{low-m_{T2} }$. The wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Higgs bosons. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{\pm} _{1}/\tilde{\chi}^{0} _{2})$ = 300 GeV, $m(\tilde{\chi}^{0} _{1})$ = 100 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the $SR^{Wh}_{high-m_{T2} }$. The wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Higgs bosons. The masses of the superpartners involved in the process are set to $m(\tilde{\chi}^{\pm} _{1}/\tilde{\chi}^{0} _{2})$ = 300 GeV, $m(\tilde{\chi}^{0} _{1})$ = 100 GeV. Only statistical uncertainties are shown.
Signal Hepdataeptance for $SR^{bRPV}_{2l-SS}$ signal region from Fig 13(a)(aux) in a SUSY scenario where $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are produced in pairs and decay to all possible allowed bRPV decays.
Signal Hepdataeptance for $SR^{bRPV}_{3l}$ signal region from Fig 13(b)(aux) in a SUSY scenario where $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are produced in pairs and decay to all possible allowed bRPV decays.
Signal acceptance for $SR^{WZ}_{high-m_{T2}}$ in a SUSY scenario where the wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Z bosons.
Signal acceptance for $SR^{WZ}_{low-m_{T2}}$ in a SUSY scenario where the wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Z bosons.
Signal acceptance for $SR^{RPV}_{2l1b}-L$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l1b}-M$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l2b}-L$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l2b}-M$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l2b}-H$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l3b}-L$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l3b}-M$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{RPV}_{2l3b}-H$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{bRPV}_{2l-SS}$ signal region in a SUSY scenario where $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are produced in pairs and decay to all possible allowed bRPV decays.
Signal efficiency for $SR^{bRPV}_{3l}$ signal region in a SUSY scenario where $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are produced in pairs and decay to all possible allowed bRPV decays.
Signal efficiency for $SR^{WZ}_{high-m_{T2}}$ in a SUSY scenario where the wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Z bosons.
Signal efficiency for $SR^{WZ}_{low-m_{T2}}$ in a SUSY scenario where the wino-like doublet pair ($\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$) were produced and then decays into $bino-like \tilde{\chi}^{0} _{1}$ which is the lightest SUSY particle (LSP) accompanied by mass on-shell or mass off-shell W and Z bosons.
Signal efficiency for $SR^{RPV}_{2l1b}-L$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l1b}-M$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l2b}-L$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l2b}-M$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l2b}-H$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l3b}-L$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l3b}-M$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal efficiency for $SR^{RPV}_{2l3b}-H$ signal region in a SUSY scenario where the $\tilde{\chi}^{0} _{1} and \tilde{\chi}^{0} _{2}$ are directly produced and undergoes prompt RPV decays.
Signal acceptance for $SR^{Wh}_{high-m_{T2} }$ signal region from Fig 11(a)(aux) in a SUSY scenario where direct production of a lightest $\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$ , decay with 100% branching ratio to a final state with a same sign light lepton (e or $\mu$) pair and two lightest neutralino1, via the on-shell emission of SM W and Higgs bosons,
Signal acceptance for $SR^{Wh}_{low-m_{T2} }$ signal region from Fig 11(b)(aux) in a SUSY scenario where direct production of a lightest $\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$ , decay with 100% branching ratio to a final state with a same sign light lepton (e or $\mu$) pair and two lightest neutralino1, via the on-shell emission of SM W and Higgs bosons,
Signal efficiency for $SR^{Wh}_{high-m_{T2} }$ signal region from Fig 15(a)(aux) in a SUSY scenario where direct production of a lightest $\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$ , decay with 100% branching ratio to a final state with a same sign light lepton (e or $\mu$) pair and two lightest neutralino1, via the on-shell emission of SM W and Higgs bosons,
Signal efficiency for $SR^{Wh}_{low-m_{T2} }$ signal region from Fig 15(b)(aux) in a SUSY scenario where direct production of a lightest $\tilde{\chi}^{\pm} _{1} and \tilde{\chi}^{0} _{2}$ , decay with 100% branching ratio to a final state with a same sign light lepton (e or $\mu$) pair and two lightest neutralino1, via the on-shell emission of SM W and Higgs bosons,
Observed 95% X-section upper limits as a function of higgsino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{1}/\tilde{\chi}^{0}_{2}$ mass in the bilinear RPV model from Fig 14.
Observed 95% X-section upper limits as a function of higgsino $\tilde{\chi}^{0}_{1}/\tilde{\chi}^{0}_{2}$ mass in the UDD RPV model from Fig 18.
Observed 95% X-section upper limits as a function of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ mass in the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 9(aux).
N-1 distributions for $m_{T2}$ of observed data and expected background towards $SR^{WZ}_{high-m_{T2}}$ from publication's Figure 11(a) . The last bin is inclusive.
N-1 distributions for $m_{T2}$ of observed data and expected background towards $SR^{WZ}_{low-m_{T2}}$ from publication's Figure 11(b) . The last bin is inclusive.
N-1 distributions for $m_{T2}$ of observed data and expected background towards $SR^{bRPV}_{2l-SS}$ from publication's Figure 11(c) . The last bin is inclusive.
N-1 distributions for $m_{T2}$ of observed data and expected background towards $SR^{bRPV}_{3l}$ from publication's Figure 11(d) . The last bin is inclusive.
N-1 distributions for $\sum p^{b-jet}_{T}/\sum p^{jet}_{T}$ of observed data and expected background towards $SR^{RPV}_{2l1b}-L$ from publication's Figure 16(a) . The last bin is inclusive.
N-1 distributions for $\sum p^{b-jet}_{T}/\sum p^{jet}_{T}$ of observed data and expected background towards $SR^{RPV}_{2l2b}-M$ from publication's Figure 16(b) . The last bin is inclusive.
N-1 distributions for $\sum p^{b-jet}_{T}/\sum p^{jet}_{T}$ of observed data and expected background towards $SR^{RPV}_{2l3b}-H$ from publication's Figure 16(c) . The last bin is inclusive.
N-1 distribution for $E_{T}^{miss}$ in $SR^{Wh}_{high-m_{T2} }$ in ee channel
N-1 distribution for $E_{T}^{miss}$ in $SR^{Wh}_{high-m_{T2} }$ in e$\mu$ channel
N-1 distribution for $E_{T}^{miss}$ in $SR^{Wh}_{high-m_{T2} }$ in $\mu\mu$ channel
N-1 distribution for $\mathcal{S}(E_{T}^{miss})$ in $SR^{Wh}_{low-m_{T2} }$ in ee channel
N-1 distribution for $\mathcal{S}(E_{T}^{miss})$ in $SR^{Wh}_{low-m_{T2} }$ in e$\mu$ channel
N-1 distribution for $\mathcal{S}(E_{T}^{miss})$ in $SR^{Wh}_{low-m_{T2} }$ in $\mu\mu$ channel
A search for charged Higgs bosons decaying into a top quark and a bottom quark is presented. The data analysed correspond to 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$=13TeV, recorded with the ATLAS detector at the LHC. The production of a heavy charged Higgs boson in association with a top quark and a bottom quark, $pp\rightarrow tbH^{+}\rightarrow tbtb$, is explored in the $H^+$ mass range from 200 to 2000 GeV using final states with jets and one electron or muon. Events are categorised according to the multiplicity of jets and $b$-tagged jets, and multivariate analysis techniques are used to discriminate between signal and background events. No significant excess above the background-only hypothesis is observed and exclusion limits are derived for the production cross-section times branching ratio of a charged Higgs boson as a function of its mass; they range from 3.6 pb at 200 GeV to 0.036 pb at 2000 GeV at 95% confidence level. The results are interpreted in the hMSSM and $M_h^{125}$ scenarios.
Observed and expected upper limits for the production of $H^+\rightarrow tb$ in association with a top quark and a bottom quark. The bands surrounding the expected limit show the 68% and 95% confidence intervals. The red lines show the observed and expected 95% CL exclusion limits obtained with the 36 fb$^{-1}$ data sample. Theory predictions are shown for two representative values of $\tan\beta$ in the hMSSM benchmark scenario. Uncertainties in the predicted $H^+$ cross-sections or branching ratios are not considered.
Observed and expected limits on $\tan\beta$ as a function of $m_{H^+}$ in the hMSSM scenario. Limits are shown for $\tan\beta$ values in the range of 0.5-60 due to the availability of the model prediction. The bands surrounding the expected limits show the 68% and 95% confidence intervals. Uncertainties in the predicted $H^+$ cross-sections or branching ratios are not considered.
Observed and expected limits on $\tan\beta$ as a function of $m_{H^+}$ in the $M_h^{125}$ scenario. Limits are shown for $\tan\beta$ values in the range of 0.5-60 due to the availability of the model prediction. The bands surrounding the expected limits show the 68% and 95% confidence intervals. Uncertainties in the predicted $H^+$ cross-sections or branching ratios are not considered.
Observed and expected limits on $\tan\beta$ as a function of $m_{H^+}$ in the $M_h^{125}(\tilde{\chi})$ scenario. Limits are shown for $\tan\beta$ values in the range of 0.5-60 due to the availability of the model prediction. The bands surrounding the expected limits show the 68% and 95% confidence intervals. Uncertainties in the predicted $H^+$ cross-sections or branching ratios are not considered.
Observed and expected limits on $\tan\beta$ as a function of $m_{H^+}$ in the $M_h^{125}(\tilde{\tau})$ scenario. Limits are shown for $\tan\beta$ values in the range of 0.5-60 due to the availability of the model prediction. The bands surrounding the expected limits show the 68% and 95% confidence intervals. Uncertainties in the predicted $H^+$ cross-sections or branching ratios are not considered.
Observed and expected limits on $\tan\beta$ as a function of $m_{H^+}$ in the $M_h^{125}$(alignment) scenario. Limits are shown for $\tan\beta$ values in the range of 0.5-60 due to the availability of the model prediction. The bands surrounding the expected limits show the 68% and 95% confidence intervals. Uncertainties in the predicted $H^+$ cross-sections or branching ratios are not considered.
Observed and expected limits on $\tan\beta$ as a function of $m_{H^+}$ in the $M_{h_1}^{125}$(CPV) scenario. Limits are shown for $\tan\beta$ values in the range of 0.5-60 due to the availability of the model prediction. The bands surrounding the expected limits show the 68% and 95% confidence intervals. Uncertainties in the predicted $H^+$ cross-sections or branching ratios are not considered.
Event yields of the SM background processes and the 800 GeV $H^{+}$ sample in the four analysis regions before the fit to the data. Uncertainties include both statistical and systematic uncertainties. The yields of the $H^{+}$ signal sample correspond to a cross-section times branching fraction of 10 pb.
Event acceptance for the different $H^+$ mass signal samples.
The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two $W$ bosons, the lightest neutralinos ($\tilde\chi^0_1$), and quarks, are presented. The signal is characterised by the presence of a single charged lepton ($e^{\pm}$ or $\mu^{\pm}$) from a $W$ boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2 TeV (1.4 TeV) are excluded at 95% confidence level for a light $\tilde\chi^0_1$.
Post-fit $m_{T}$ distribution in the SR 2J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 2J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Observed 95% CL exclusion contours for the gluino one-step x = 1/2 model.
Expected 95% CL exclusion contours for the gluino one-step x = 1/2 model. space.
Observed 95% CL exclusion contours for the gluino one-step variable-x
Expected 95% CL exclusion contours for the gluino one-step variable-x
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Upper limits on the signal cross section for simplified model gluino one-step x = 1/2
Upper limits on the signal cross section for simplified model gluino one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x = 1/2
Upper limits on the signal cross section for simplified model squark one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x=1/2 in one-flavour schemes
Upper limits on the signal cross section for simplified model squark one-step variable-x in one-flavour schemes
Post-fit $m_{eff}$ distribution in the 2J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag validation region. Uncertainties include statistical and systematic uncertainties.
Post-fit $m_{eff}$ distribution in the 6J b-veto validation region. Uncertainties include statistical and systematic uncertainties.
Event selection cutflow for two representative signal samples for the SR2JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR2JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for squark production one-step variable-x simplified models
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.