Showing 10 of 6967 results
A search for long-lived particles originating from the decay of b hadrons produced in proton-proton collisions with a center-of-mass energy of 13 TeV at the LHC is presented. The analysis is performed on a data set recorded in 2018, corresponding to an integrated luminosity of 41.6 fb$^{-1}$. Interactions of the long-lived particles in the CMS endcap muon system would create hadronic or electromagnetic showers, producing clusters of detector hits. Selected events contain at least one such high-multiplicity cluster in the muon endcaps and require the presence of a displaced muon. The most stringent upper limits to date on the branching fraction $\mathcal{B}$(B $\to$ K$Φ$), where the long-lived particle $Φ$ decays to a pair of hadrons, are obtained for $Φ$ masses of 0.3$-$3.0 GeV and $Φ$ mean proper decay lengths in the range of 1$-$500 cm.
Distributions of the CSC cluster time shown for signal samples with m = 0.3 GeV, c$\tau_{\Phi}$ = 100 mm, m = 1.0 GeV, c$\tau_{\Phi}$ = 300 mm, m = 2.0 GeV, c$\tau_{\Phi}$ = 1000 mm and the background-enriched data.
Distributions of the CSC cluster size $N_{hits}$ shown for signal samples with m = 0.3 GeV, c$\tau_{\Phi}$ = 100 mm, m = 1.0 GeV, c$\tau_{\Phi}$ = 300 mm, m = 2.0 GeV, c$\tau_{\Phi}$ = 1000 mm and the background-enriched data.
Distributions of the $\Delta\Phi$ between the CSC cluster and the trigger muon, shown for signal samples with m = 0.3 GeV c$\tau_{\Phi}$ = 100 mm, m = 1.0 GeV c$\tau_{\Phi}$ = 300 mm, m = 2.0 GeV c$\tau_{\Phi}$ = 1000 mm and the background-enriched data.
The 2D distribution of the $\Delta\Phi$ (cluster, $\mu_{trigger}$) vs the number of hits in clusters, in events from the out-of-time region.
Exclusion limits at 95% CL on the $B \rightarrow K \Phi$ as a function of the decay distance of the long-lived particle.
Exclusion limits at 95% CL on the $B \rightarrow K \Phi$ as a function of the decay distance of the long-lived particle.
Exclusion limits at 95% CL on the $B \rightarrow K \Phi$ as a function of the decay distance of the long-lived particle.
Exclusion limits at 95% CL on the $B \rightarrow K \Phi$ as a function of the decay distance of the long-lived particle.
Exclusion limits at 95% CL on the $B \rightarrow K \Phi$ as a function of the decay distance of the long-lived particle.
The estimated BR limits for a range of generator parameters: $0.3 < m_{LLP}$ < 3.0 GeV and 0 < $c\tau$ < 10000 mm.
The contour of the 2D distribution which includes the generation parameter values corresponding to the BR of 0.01.
The contour of the 2D distribution which includes the generation parameter values corresponding to the BR of 0.001.
Signal cut-flow efficiencies for the hadronic shower decay mode
Signal cut-flow efficiencies for the electromagnetic shower decay mode
Using proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016$-$2018, corresponding to an integrated luminosity of 140 fb$^{-1}$, the first full reconstruction of the three vector B meson states, B$^{*+}$, B$^{*0}$, and B$^{*0}_\text{s}$, is performed. The mass differences between the excited mesons and their corresponding ground states are measured to be $m(\text{B}^{*+})-m(\text{B}^+)$ = 45.277 $\pm$ 0.039 $\pm$ 0.027 MeV, $m(\text{B}^{*0})- m(\text{B}^0)$ = 45.471 $\pm$ 0.056 $\pm$ 0.028 MeV, and $m(\text{B}^{*0}_\text{s})-m(\text{B}_\text{s})$ = 49.407 $\pm$ 0.132 $\pm$ 0.041 MeV, where the first uncertainties are statistical and the second are systematic. These results improve on the precision of previous measurements by an order of magnitude.
The measured mass differences between vector and ground B meson states.
Extracted masses of $\mathrm{B}^{*+}$, $\mathrm{B}^{*0}$, and $\mathrm{B}^{*0}_{\mathrm{s}}$ mesons. The values are obtained using the measurements in Table 1 and the ground state masses from PDG 2024 (S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)), which are the source of the last uncertainties.
Extracted mass differences between vector B meson states of different flavour. The values are obtained using the measurements in Table 4 and the ground state mass differences from PDG 2024 (S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)), which are the source of the last uncertainties.
The measured differences of mass differences between vector and ground states.
The measured ratios of mass differences between vector and ground states.
A reinterpretation of a prior narrow-resonance search is performed to investigate the resonant production of pairs of dijet resonances via broad mediators. This analysis targets events with four resolved jets, requiring dijet invariant masses greater than 0.2 TeV and four-jet invariant masses greater than 1.6 TeV. The search uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected by the CMS experiment in proton-proton collisions at $\sqrt{s}$ = 13 TeV. The reinterpretation considers the production of new heavy four-jet resonances, with widths ranging from 1.5 to 10% of their mass, which decay to a pair of dijet resonances. This analysis probes resonant production in the four-jet and dijet mass distributions. Upper limits at 95% confidence level and significances are reported on the production cross section of new resonances as functions of their widths and masses, between 2 and 10 TeV. In particular, at a four-jet resonance mass of 8.6 TeV, the local (global) significance ranges from 3.9 (1.6) to 3.6 (1.4) standard deviations (s.d.) as the resonance width is increased from 1.5 to 10%. This relative insensitivity to the choice of width indicates that a broad resonance is an equally valid interpretation of this excess. The broad resonance hypothesis at a resonance mass of 8.6 TeV is supported by the presence of an event with a four-jet mass of 5.8 TeV and an average dijet mass of 2.0 TeV. Also, we report the reinterpretation of a second effect, at a four-jet resonance mass of 3.6 TeV, which has a local (global) significance of up to 3.9 (2.2) s.d.
Observed number of events within bins of the four-jet mass and the average mass of the two dijets.
Observed number of events within bins of the four-jet mass and the ratio $\alpha$, which is the average dijet mass divided by the four-jet mass.
Predictions of a leading order (LO) QCD simulation, normalized to an integrated luminosity of 138 fb$^{-1}$. The number of events are examined within bins of the four-jet mass and the average mass of the two dijets.
Predictions of a leading order (LO) QCD simulation, normalized to an integrated luminosity of 138 fb$^{-1}$. The number of events are examined within bins of the four-jet mass and the ratio $\alpha$, which is the average dijet mass divided by the four-jet mass.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\overline{m}_{\mathrm{2j}}$ plane from a signal simulation of a diquark with a width of 1.5% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\overline{m}_{\mathrm{2j}}$ plane from a signal simulation of a diquark with a width of 5% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\overline{m}_{\mathrm{2j}}$ plane from a signal simulation of a diquark with a width of 10% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\alpha$ plane from a signal simulation of a diquark with a width of 1.5% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\alpha$ plane from a signal simulation of a diquark with a width of 5% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\alpha$ plane from a signal simulation of a diquark with a width of 10% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
Signal differential distributions as a function of four-jet mass for $\alpha_{\mathrm{true}}$ = 0.25, diquark masses of 2, 5, 8.6 TeV and various widths, for all $\alpha$ bins inclusively. The integral of each distribution has been normalized to unity.
The product of acceptance, $A$, and efficiency, $\varepsilon$, of a resonant signal with $\alpha_{\mathrm{true}}$ = 0.25 vs. the diquark mass for various diquark widths, and for all $\alpha$ bins inclusively. The acceptance is defined as the fraction of generated events passing the kinematic selection criteria, while the efficiency is the fraction of signal events satisfying $m_{\mathrm{4j}} > 1.6$ TeV. We also show the signal acceptance alone in the curves where $\varepsilon = 1$.
The four-jet mass distribution in data for 0.22 < $\alpha$ < 0.24, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV, and $\Gamma/M_{\mathrm{S}}$ = 1.5%, 10% are also shown, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.24 < $\alpha$ < 0.26, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV, and $\Gamma/M_{\mathrm{S}}$ = 1.5%, 10% are also shown, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.26 < $\alpha$ < 0.28, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV and $\alpha_{\mathrm{true}}$ = 0.29, $M_{\mathrm{S}}$ = 3.6 TeV, each shown for widths of $\Gamma/M_{\mathrm{S}}$ = 1.5% and 10% are also included, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.28 < $\alpha$ < 0.30, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV and $\alpha_{\mathrm{true}}$ = 0.29, $M_{\mathrm{S}}$ = 3.6 TeV, each shown for widths of $\Gamma/M_{\mathrm{S}}$ = 1.5% and 10% are also included, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.30 < $\alpha$ < 0.32, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV and $\alpha_{\mathrm{true}}$ = 0.29, $M_{\mathrm{S}}$ = 3.6 TeV, each shown for widths of $\Gamma/M_{\mathrm{S}}$ = 1.5% and 10% are also included, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.32 < $\alpha$ < 0.34, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV, and $\Gamma/M_{\mathrm{S}}$ = 1.5%, 10% are also shown, with cross sections equal to the observed upper limits at 95% confidence level.
The inclusive four-jet mass distribution in data for $\alpha$ > 0.10, fitted with three background-only functions (Dijet-5p, PowExp-5p and ModDijet-5p), each with five free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV and $\alpha_{\mathrm{true}}$ = 0.29, $M_{\mathrm{S}}$ = 3.6 TeV, each shown for widths of $\Gamma/M_{\mathrm{S}}$ = 1.5% and 10% are also included, with cross sections equal to the observed upper limits at 95% confidence level.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.25$ and width of the initial resonance Y equal to 1.5%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 1.5%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.25$ and width of the initial resonance Y equal to 5%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 5%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.25$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.11$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.13$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.15$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.17$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.19$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.21$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.23$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.27$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.29$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.31$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.33$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.42$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.11$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.13$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.15$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.17$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.19$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.21$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.23$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.27$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.29$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.31$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.33$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.42$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
Observed local $p$-value for a four-jet resonance, Y, decaying to a pair of dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}}/M_{\mathrm{Y}}$ = 0.25, and various widths of Y superimposed.
Observed local $p$-value for a four-jet resonance, Y, decaying to a pair of dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}}/M_{\mathrm{Y}}$ = 0.29, and various widths of Y superimposed.
The table presents the cumulative cutflow for a signal with $M_{\mathrm{S}} = 2.0$ TeV, $M_{\chi} = 0.5$ TeV and different width hypotheses ($\Gamma/M_{\mathrm{S}} =$ 1.5, 5, and 10%). Each row corresponds to the number of signal events that survive all cuts up to and including the one listed. The percentage in parentheses shows the efficiency of the current cut alone, defined as the ratio of the number of events that survive all cuts up to and including this one to the number of events that survived all previous cuts.
The table presents the cumulative cutflow for a signal with $M_{\mathrm{S}} = 5.0$ TeV, $M_{\chi} = 1.25$ TeV and different width hypotheses ($\Gamma/M_{\mathrm{S}} =$ 1.5, 5, and 10%). Each row corresponds to the number of signal events that survive all cuts up to and including the one listed. The percentage in parentheses shows the efficiency of the current cut alone, defined as the ratio of the number of events that survive all cuts up to and including this one to the number of events that survived all previous cuts.
The table presents the cumulative cutflow for a signal with $M_{\mathrm{S}} = 8.6$ TeV, $M_{\chi} = 2.15$ TeV and different width hypotheses ($\Gamma/M_{\mathrm{S}} =$ 1.5, 5, and 10%). Each row corresponds to the number of signal events that survive all cuts up to and including the one listed. The percentage in parentheses shows the efficiency of the current cut alone, defined as the ratio of the number of events that survive all cuts up to and including this one to the number of events that survived all previous cuts.
An analysis of the flavour structure of dimension-6 effective field theory (EFT) operators in multilepton final states is presented, focusing on the interactions involving Z bosons. For the first time, the flavour structure of these operators is disentangled by simultaneously probing the interactions with different quark generations. The analysis targets the associated production of a top quark pair and a Z boson, as well as diboson processes in final states with at least three leptons, which can be electrons or muons. The data were recorded by the CMS experiment in the years 2016$-$2018 in proton-proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 138 fb$^{-1}$. Consistency with the standard model of particle physics is observed and limits are set on the selected Wilson coefficients, split into couplings to light- and heavy-quark generations.
Summary of the limits obtained for the Wilson coefficients.
Likelihood scan of cHqMRe1122 versus cHqMRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHq3MRe1122 versus cHq3MRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHuRe1122 versus cHuRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHdRe1122 versus cHdRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cW versus cWtil. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHqMRe1122 versus cHqMRe33. Other Wilson coefficients are profiled as well.
Likelihood scan of cHq3MRe1122 versus cHq3MRe33. Other Wilson coefficients are profiled as well.
Likelihood scan of cHuRe1122 versus cHuRe33. Other Wilson coefficients are profiled as well.
Likelihood scan of cHdRe1122 versus cHdRe33. Other Wilson coefficients are profiled as well.
Likelihood scan of cW versus cWtil. Other Wilson coefficients are profiled as well.
A measurement of the angular structure of jets containing a prompt D$^0$ meson and of inclusive jets in proton-proton collisions at the LHC at a center-of-mass energy of 5.02 TeV is presented. The data corresponding to an integrated luminosity of 301 pb$^{-1}$ were collected by the CMS experiment in 2017. Two jet grooming algorithms, late-$k_\mathrm{T}$ and soft drop, are used to study the intrajet radiation pattern using iterative Cambridge$-$Aachen declustering. The splitting-angle distributions of jets with transverse momentum ($p_\mathrm{T}$) of around 100 GeV, obtained with these two algorithms, show that there is a shift of the distribution for jets containing a prompt D$^0$ meson with respect to inclusive jets. The shift observed in the late-$k_\mathrm{T}$ grooming approach is consistent with the dead-cone effect, whereas the shift for splittings selected with the soft-drop algorithm appears to be dominated by gluon splitting to charm quark-antiquark pairs. The measured distributions are corrected to the particle level and can be used to constrain model predictions for the substructure of high-$p_\mathrm{T}$ charm quark jets.
The unfolded late-$k_{T}$ angular distribution for prompt $D^{0}$ jets.
The unfolded late-$k_{T}$ angular distribution for inclusive jets.
The unfolded SD angular distribution for prompt $D^{0}$ jets.
The unfolded SD angular distribution for inclusive jets.
The ratio of late-$k_{T}$ angular distribution for prompt $D^{0}$ jets to inclusive jets
The ratio of SD angular distribution for prompt $D^{0}$ jets to inclusive jets
The first measurement of pseudorapidity and azimuthal angle distributions relative to the momentum vector of a Z boson for low transverse momentum ($p_\mathrm{T}$) charged hadrons in lead-lead (PbPb) collisions is presented. By studying the hadrons produced in an event with a high-$p_\mathrm{T}$ Z boson (40 $\lt$$p_\mathrm{T}$$\lt$ 350 GeV), the analysis probes how the quark-gluon plasma (QGP) medium created in these collisions affects the parton recoiling opposite to the Z boson. Utilizing PbPb data at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}}$ = 5.02 TeV from 2018 with an integrated luminosity of 1.67 nb$^{-1}$ and proton-proton (pp) data at the same energy from 2017 with 301 pb$^{-1}$, the distributions are examined in bins of charged-hadron $p_\mathrm{T}$. A significant modification of the distributions for charged hadrons in the range 1$\lt$$p_\mathrm{T}$$\lt$ 2 GeV in PbPb collisions is observed when compared to reference measurements from pp collisions. The data provide new information about the correlation between hard and soft particles in heavy ion collisions, which can be used to test predictions of various jet quenching models. The results are consistent with expectations of a hydrodynamic wake created when the QGP is depleted of energy by the parton propagating through it. Based on comparisons of PbPb data with pp references and predictions from theoretical models, this Letter presents the first evidence of medium-recoil and medium-hole effects caused by a hard probe.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in pp collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in pp collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in pp collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 0-30% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 0-30% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 0-30% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 30-50% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 30-50% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 30-50% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 50-90% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 50-90% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 50-90% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 0-90% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 0-90% collisions.
The $\Delta\phi_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 0-90% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in pp collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in pp collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in pp collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 0-30% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 0-30% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 0-30% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 30-50% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 30-50% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 30-50% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 50-90% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 50-90% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 50-90% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $1 <p_T < 2$ GeV in PbPb for centrality interval of 0-90% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $2 <p_T < 4$ GeV in PbPb for centrality interval of 0-90% collisions.
The $\Delta y_{ch,Z}$ spectra for events with Z boson $p_{T}^Z > 40$ GeV and charged-hadrons with $4 <p_T < 10$ GeV in PbPb for centrality interval of 0-90% collisions.
We present the first measurements of the forward and midrapidity $η$-meson cross sections from $p$$+$$p$ collisions at $\sqrt{s}=500$ and $510$~GeV, respectively. We also report the midrapidity $η/π^0$ ratio at 510 GeV. The forward cross section is measured differentially in $η$-meson transverse momentum ($p_T$) from 1.0 to 6.5~GeV/$c$ for pseudorapidity $3.0<|η|<3.8$. The midrapidity cross section is measured from 3.5 to 44 GeV/$c$ for pseudorapidity $|η|<0.35$. Both cross sections serve as critical inputs to an updated global analysis of the $η$-meson fragmentation functions.
The invariant differential cross section of $\eta$ mesons at forward rapidity in pp collisions at center-of-mass energy 500 GeV.
The invariant differential cross section of $\eta$ mesons at central rapidity in pp collisions at center-of-mass energy 510 GeV.
The ratio of $\eta$ to $\pi^0$ cross sections at central rapidity in pp collisions at center-of-mass energy 510 GeV.
Correlation matrix for the correlated systematic uncertainties of the forward rapidity $\eta$ meson cross section.
Correlation matrix for the correlated systematic uncertainties of the central rapidity $\eta$ meson cross section.
A search for pseudoscalar or scalar bosons decaying to a top quark pair ($\mathrm{t\bar{t}}$) in final states with one or two charged leptons is presented. The analyzed proton-proton collision data was recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. The invariant mass $m_\mathrm{t\bar{t}}$ of the reconstructed $\mathrm{t\bar{t}}$ system and variables sensitive to its spin and parity are used to discriminate against the standard model $\mathrm{t\bar{t}}$ background. Interference between pseudoscalar or scalar boson production and the standard model $\mathrm{t\bar{t}}$ continuum is included, leading to peak-dip structures in the $m_\mathrm{t\bar{t}}$ distribution. An excess of the data above the background prediction, based on perturbative quantum chromodynamics (QCD) calculations, is observed near the kinematic $\mathrm{t\bar{t}}$ production threshold, while good agreement is found for high $m_\mathrm{t\bar{t}}$. The data are consistent with the background prediction if the contribution from the production of a color-singlet ${}^1\mathrm{S}_0^{[1]}$$\mathrm{t\bar{t}}$ quasi-bound state $η_\mathrm{t}$, predicted by nonrelativistic QCD, is added. Upper limits at 95% confidence level are set on the coupling between the pseudoscalar or scalar bosons and the top quark for boson masses in the range 365$-$1000 GeV, relative widths between 0.5 and 25%, and two background scenarios with or without $η_\mathrm{t}$ contribution.
LO-to-NNLO K-factors for the A resonance signals, as a function of mass.
LO-to-NNLO K-factors for the A-SM interference signals, as a function of mass.
LO-to-NNLO K-factors for the H resonance signals, as a function of mass.
LO-to-NNLO K-factors for the H-SM interference signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 0.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
LO-to-NNLO K-factors for the A resonance signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
LO-to-NNLO K-factors for the A-SM interference signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
LO-to-NNLO K-factors for the H resonance signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
LO-to-NNLO K-factors for the H-SM interference signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 3.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 4.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 0.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 5.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 8.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 10.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 13.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 15.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 3.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 18.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 21.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 4.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 25.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 5.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 0.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 8.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 10.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 13.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 15.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 18.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 3.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 21.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 4.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 25.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 5.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 0.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 8.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 10.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 13.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 15.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 18.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 21.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 3.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 25.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 0.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 4.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 5.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 8.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 10.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 13.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 3.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 15.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 4.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 18.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 5.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 8.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 21.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 10.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 25.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 13.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 0.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 15.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 18.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 21.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 25.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 0.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 3.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 4.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 5.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 8.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 3.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 10.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 4.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 13.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 5.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 15.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 8.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 10.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 18.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 13.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 21.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 15.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 25.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 18.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 0.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 21.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 25.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 3.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 4.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 5.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 8.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 10.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 13.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 15.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 18.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 21.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 25.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low-mass vector-meson ($ω+ρ$ and $ϕ$) production through the dimuon decay channel at forward rapidity $(1.2<|\mbox{y}|<2.2)$ in $p$$+$$p$ and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV. The low-mass vector-meson yield and nuclear-modification factor were measured as a function of the average number of participating nucleons, $\langle N_{\rm part}\rangle$, and the transverse momentum $p_T$. These results were compared with those obtained via the kaon decay channel in a similar $p_T$ range at midrapidity. The nuclear-modification factors in both rapidity regions are consistent within the uncertainties. A comparison of the $ω+ρ$ and $J/ψ$ mesons reveals that the light and heavy flavors are consistently suppressed across both $p_T$ and ${\langle}N_{\rm part}\rangle$. In contrast, the $ϕ$ meson displays a nuclear-modification factor consistent with unity, suggesting strangeness enhancement in the medium formed.
The differential cross sections of $\omega+\rho$ mesons as a function of $p_T$ in $p+p$ collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.
The differential cross sections of $\phi$ meson as a function of $p_T$ in $p+p$ collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.
The invariant yields of $\phi$ and $\omega+\rho$ mesons as a function of $p_T$ in Au+Au collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.
The invariant yields of $\phi$ and $\omega+\rho$ mesons as a function of $\langle N_{\rm part}\rangle$ in Au+Au collisions. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.
$R_{AA}$ of $\phi$ meson as a function of $p_T$ for in Au+Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV, compared with Cu+Au collisions at $1.2<|y|<2.2$. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.
$R_{AA}$ of $\phi$ meson as a function of $\langle N_{\rm part}\rangle$ for $1.2<|y|<2.2$ in Au+Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV. The systematic uncertainties of type-A (uncorrelated) are combined with statistical uncertainties in quadrature and are labeled as stat. Type-B (correlated) systematic uncertainties are listed as sys.
A search for Higgs boson pair production in the $b \overline{b} γγ$ final state is performed. The proton-proton collision dataset in this analysis corresponds to an integrated luminosity of 308 fb$^{-1}$, consisting of two samples, 140 fb$^{-1}$ at a centre-of-mass energy of 13 TeV and 168 fb$^{-1}$ at 13.6 TeV, recorded between 2015 and 2024 by the ATLAS detector at the CERN Large Hadron Collider. In addition to a larger dataset, this analysis improves upon the previous search in the same final state through several methodological and technical developments. The Higgs boson pair production cross section divided by the Standard Model prediction is found to be $μ_{HH} = 0.9^{+1.4}_{-1.1}$ ($μ_{HH} = 1^{+1.3}_{-1.0}$ expected), which translates into a 95% confidence-level upper limit of $μ_{HH}<3.8$. At the same confidence level the Higgs self-coupling modifier is constrained to be in the range $-1.7 < κ_λ< 6.6$ ($-1.8 < κ_λ< 6.9$ expected).
Weighted di-photon invariant mass distribution summed over all categories and the two data-taking periods. The events in each category are weighted by $log(1+S_{SM}/B)$. $S_{SM}$ is the expected signal yield assuming $\mu_{HH}$=1, while B is the continuum background yield obtained from a fit to the sidebands plus the single Higgs boson background obtained from simulation, all in a ± 5 GeV window around the Higgs boson mass. The lines show the fit results for the continuum background only (light dotted), adding single Higgs boson backgrounds (black dotted) and the full fit (solid).
Weighted di-photon invariant mass distribution summed over all categories and the two data-taking periods. The events in each category are weighted by $log(1+S_{SM}/B)$. $S_{SM}$ is the expected signal yield assuming $\mu_{HH}$=1, while B is the continuum background yield obtained from a fit to the sidebands plus the single Higgs boson background obtained from simulation, all in a ± 5 GeV window around the Higgs boson mass. The lines show the fit results for the continuum background only (light dotted), adding single Higgs boson backgrounds (black dotted) and the full fit (solid).
The 95% CL upper limits on the signal strength, obtained with separate fits to Run-2 and Run-3 data as well as their combination. When computing the significance or upper limit for one data-taking period only, $\mu_{HH}$ of the other period is left free to vary. All other parameters of interest are fixed to their SM expectation.
Observed profile likelihood scans of $\kappa_\lambda$. The scans are performed by varying only the coupling modifier of interest, while all other relevant coupling modifiers are fixed to unity.
Expected profile likelihood scans of $\kappa_\lambda$. The scans are performed by varying only the coupling modifier of interest, while all other relevant coupling modifiers are fixed to unity.
Observed profile likelihood scans of $\kappa_{2V}$. The scans are performed by varying only the coupling modifier of interest, while all other relevant coupling modifiers are fixed to unity.
Expected profile likelihood scans of $\kappa_{2V}$. The scans are performed by varying only the coupling modifier of interest, while all other relevant coupling modifiers are fixed to unity.
Confidence level contours at 68% (solid line) and 95% (dashed line) in the $(\kappa_\lambda, \kappa_{2V})$ parameter space, when all other coupling modifiers are fixed to their SM predictions. The corresponding expected contours are shown by the inner and outer shaded regions The SM prediction is indicated by the star, while the best-fit value is denoted by the cross.
Confidence level contours at 68% (solid line) and 95% (dashed line) in the $(\kappa_\lambda, \kappa_{2V})$ parameter space, when all other coupling modifiers are fixed to their SM predictions. The corresponding expected contours are shown by the inner and outer shaded regions The SM prediction is indicated by the star, while the best-fit value is denoted by the cross.
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 2. 3he lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
The expected number of events (estimated by using simulation) from the SM HH signals and single Higgs boson production, and the expected number of events from the continuum background, evaluated in the 120 GeV < $m_{\gamma\gamma}$ < 130 GeV window in Run 3 for the different low-mass (LM) and high-mass (HM) categories. For comparison, the number of data events is also shown. The uncertainties in the HH signals and single Higgs boson backgrounds include the systematic uncertainties discussed in Section 6. Asymmetric uncertainties arise primarily from the theory calculation of the SM ggF HH cross section and the large uncertainty in the yield of single Higgs bosons produced in ggF events in association with heavy-flavour jets. The uncertainty in the continuum background is given by the sum in quadrature of the statistical uncertainty from the fit to the data and the spurious signal uncertainty.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.