A strong negative transverse polarization P z is found for forward produced lambdas observed in 10 and 16 GeV/ c K − p interactions. This indicates that exchanges of natural spin-parity are dominant in the production process. Using the polarization results, the d σ d u′ distributions for natural and unnatural spin-parity exchanges are derived. For unnatural exchanges, a dip is observed at u ′≅0.3 GeV 2 , which can be explained as a nonsense-wrong-signature zero of the N β trajectory. The value of P z for forward producted lambdas is constant with energy. This is in agreement with the triple-Regge model prediction, as is the fact that P z is constant as a function of M 2 s . The two non-transverse polarization components, P x and P y , have been measured and are found to be consistent with zero for all x values, unlike P z .
No description provided.
No description provided.
No description provided.
None
THE AVERAGE PHASE IS -130.9 +- 2.7 DEG (NO EXPLICIT MOMENTUM DEPENDENCE). USING ABS(ETA+-) = 2.3*10**-3.
REGENERATION AMPLITUDE ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.
CROSS SECTION DIFFERENCES ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.
The energy dependence of the modulus and phase of the K L 0 -K S 0 regeneration amplitude on hydrogen in the range of 14–50 GeV has been investigated at the Serpukhov 70 GeV accelerator. It has been established that the modulus of the modified regeneration amplitude decreases with increasing momentum as 2|ƒ 21 0 (p)|/k = (0.84 ± 0.42) · p −0.50±0.15 mb . The amplitude phase is energy-independent and its mean value is ϕ 21 0 = −132° ± 5°. The results obtained are compared with other experiments and with predictions of different theoretical models.
TABLE ALSO CALCULATES FORWARD DIFFERENTIAL CROSS SECTION AND SIG(AK0 P) - SIG(K0 P) TOTAL CROSS SECTION DIFFERENCES.
We present a systematic analysis of the production of K ∗+ (892) and Δ ++ (1236) resonances in the K + p → K 0 p π + reaction at 5, 8.25 and 16 GeV/ c . We have measured total cross sections, differential cross sections, density matrix elements and examined resonance production mechanisms in terms of the exchange of states with definite naturality. Some results on the reaction K + p → K ∗+ (1420) p are also given.
No description provided.
No description provided.
No description provided.
The reactions K + p → K ∗+ (890) p , K + p → K ∗+ (1420) p and K + p → K 0 Δ ++ have been systematically studied for eleven incident momenta between 3.0 and 16.0 GeV/ c . Cross sections, differential cross sections and density matrix elements are presented. For K ∗ (890) production the contributions from natural and unnatural parity exchanges have also been separated into I = 0 and I = 1 components. Effective trajectories have been extracted in the case of natural parity exchange, and also for Δ ++ production.
No description provided.
DATA AT NEIGHBOURING MOMENTA ARE GROUPED TOGETHER. THE RESONANCE PRODUCTION TOTAL CROSS SECTIONS ARE FITTED BY P**-N. THIS TABLE GIVES THE VALUES FOR EACH GROUP OF MOMENTA OF THE FITTED TOTAL CROSS SECTIONS WHICH ARE USED TO NORMALIZE THE DIFFERENTIAL CROSS SECTIONS.
No description provided.
The modulus and the phase of the K L o −K S o regeneration amplitude on carbon have been measured. In a momentum range of 16–40 GeV/ c the phase is constant within experimental error bars and coincides with the regeneration phase on hydrogen. Both the modulus and the phase of the regeneration amplitude on carbon are in agreement with optical model predictions.
ASSUMING A CONSTANT PHASE INDEPENDENT OF MOMENTUM, THE CARBON REGENERATION AMPLITUDE HAS A PHASE OF -130 +- 17 DEG.
The measurements of the transmission regeneration amplitude on hydrogen in the momentum region of 14–42 GeV/ c indicate that in accordance with the Pomeranchuk theorem its magnitude |ƒ° − ƒ °|/k decreases as energy increases and its phase is approximately constant and equal to arg (ƒ° − ƒ °) = (−118 ± 13)° .
THE REGENERATION AMPLITUDE DECREASES OVER THIS ENERGY RANGE.
None
No description provided.