Date

Collaboration

Subject_areas

Search for a heavy charged Higgs boson decaying into a $W$ boson and a Higgs boson in final states with leptons and $b$-jets in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 143, 2025.
Inspire Record 2846106 DOI 10.17182/hepdata.156777

This article presents a search for a heavy charged Higgs boson produced in association with a top quark and a bottom quark, and decaying into a $W$ boson and a $125$ GeV Higgs boson $h$. The search is performed in final states with one charged lepton, missing transverse momentum, and jets using proton-proton collision data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector during Run 2 of the LHC at CERN. This data set corresponds to a total integrated luminosity of 140 fb$^{-1}$. The search is conducted by examining the reconstructed invariant mass distribution of the $Wh$ candidates for evidence of a localised excess in the charged Higgs boson mass range from $250$ GeV to $3$ TeV. No significant excess is observed and 95% confidence-level upper limits between $2.8$ pb and $1.2$ fb are placed on the production cross-section times branching ratio for charged Higgs bosons decaying into $Wh$.

31 data tables

Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the resolved analysis.

Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the merged analysis.

Product of acceptance and efficiency for pp->tbH(->Wh) as function of the charged Higgs boson mass for the resolved qqbb low-purity signal region.

More…

Search for supersymmetry in final states with missing transverse momentum and charm-tagged jets using 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 193, 2025.
Inspire Record 2842361 DOI 10.17182/hepdata.155678

The paper presents a search for supersymmetric particles produced in proton-proton collisions at $\sqrt{s}=$ 13 TeV and decaying into final states with missing transverse momentum and jets originating from charm quarks. The data were taken with the ATLAS detector at the Large Hadron Collider at CERN from 2015 to 2018 and correspond to an integrated luminosity of 139 fb$^{-1}$. No significant excess of events over the expected Standard Model background expectation is observed in optimized signal regions, and limits are set on the production cross-sections of the supersymmetric particles. Pair production of charm squarks or top squarks, each decaying into a charm quark and the lightest supersymmetric particle $\tilde{\chi}^0_1$, is excluded at 95% confidence level for squarks with masses up to 900 GeV for scenarios where the mass of $\tilde{\chi}^0_1$ is below 50 GeV. Additionally, the production of leptoquarks with masses up to 900 GeV is excluded for the scenario where up-type leptoquarks decay into a charm quark and a neutrino. Model-independent limits on cross-sections and event yields for processes beyond the Standard Model are also reported.

160 data tables

Summary of material in this HEPData record. <br/><br/> Truth Code snippets, SLHA files, Madgraph process cards and UFO files for the leptoquark models are available under "Additional Resources" (purple button on the left). <br/><br/> <b>Contours:</b> <ul> SUSY exclusion limits (best-expected SR combination) <ul> <a href="155678?version=1&table=Contour1">Expected</a> <a href="155678?version=1&table=Contour3">+1$\sigma$</a> <a href="155678?version=1&table=Contour2">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour4">Observed</a> <a href="155678?version=1&table=Contour5">+1$\sigma$</a> <a href="155678?version=1&table=Contour6">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (best-expected SR combination) as a function of $\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ <ul> <a href="155678?version=1&table=Contour7">Expected</a> <a href="155678?version=1&table=Contour9">+1$\sigma$</a> <a href="155678?version=1&table=Contour8">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour10">Observed</a> <a href="155678?version=1&table=Contour11">+1$\sigma$</a> <a href="155678?version=1&table=Contour12">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM1) <ul> <a href="155678?version=1&table=Contour15">Expected</a> <a href="155678?version=1&table=Contour14">+1$\sigma$</a> <a href="155678?version=1&table=Contour13">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour18">Observed</a> <a href="155678?version=1&table=Contour16">+1$\sigma$</a> <a href="155678?version=1&table=Contour17">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM2) <ul> <a href="155678?version=1&table=Contour21">Expected</a> <a href="155678?version=1&table=Contour20">+1$\sigma$</a> <a href="155678?version=1&table=Contour19">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour24">Observed</a> <a href="155678?version=1&table=Contour22">+1$\sigma$</a> <a href="155678?version=1&table=Contour23">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM3) <ul> <a href="155678?version=1&table=Contour27">Expected</a> <a href="155678?version=1&table=Contour26">+1$\sigma$</a> <a href="155678?version=1&table=Contour25">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour30">Observed</a> <a href="155678?version=1&table=Contour28">+1$\sigma$</a> <a href="155678?version=1&table=Contour29">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp1) <ul> <a href="155678?version=1&table=Contour33">Expected</a> <a href="155678?version=1&table=Contour32">+1$\sigma$</a> <a href="155678?version=1&table=Contour31">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour36">Observed</a> <a href="155678?version=1&table=Contour34">+1$\sigma$</a> <a href="155678?version=1&table=Contour35">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp2) <ul> <a href="155678?version=1&table=Contour39">Expected</a> <a href="155678?version=1&table=Contour38">+1$\sigma$</a> <a href="155678?version=1&table=Contour37">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour42">Observed</a> <a href="155678?version=1&table=Contour40">+1$\sigma$</a> <a href="155678?version=1&table=Contour41">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp3) <ul> <a href="155678?version=1&table=Contour45">Expected</a> <a href="155678?version=1&table=Contour44">+1$\sigma$</a> <a href="155678?version=1&table=Contour43">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour48">Observed</a> <a href="155678?version=1&table=Contour46">+1$\sigma$</a> <a href="155678?version=1&table=Contour47">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp-1c) <ul> <a href="155678?version=1&table=Contour50">Expected</a> <a href="155678?version=1&table=Contour49">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=1$ GeV) <ul> <a href="155678?version=1&table=Contour51">Expected</a> <a href="155678?version=1&table=Contour53">+1$\sigma$</a> <a href="155678?version=1&table=Contour52">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour54">Observed</a> <a href="155678?version=1&table=Contour55">+1$\sigma$</a> <a href="155678?version=1&table=Contour56">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=200$ GeV) <ul> <a href="155678?version=1&table=Contour57">Expected</a> <a href="155678?version=1&table=Contour59">+1$\sigma$</a> <a href="155678?version=1&table=Contour58">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour60">Observed</a> <a href="155678?version=1&table=Contour61">+1$\sigma$</a> <a href="155678?version=1&table=Contour62">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{21}$ exclusion limits <ul> <a href="155678?version=1&table=Contour65">Expected</a> <a href="155678?version=1&table=Contour64">+1$\sigma$</a> <a href="155678?version=1&table=Contour63">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour68">Observed</a> <a href="155678?version=1&table=Contour66">+1$\sigma$</a> <a href="155678?version=1&table=Contour67">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{22}$ exclusion limits <ul> <a href="155678?version=1&table=Contour71">Expected</a> <a href="155678?version=1&table=Contour70">+1$\sigma$</a> <a href="155678?version=1&table=Contour69">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour74">Observed</a> <a href="155678?version=1&table=Contour72">+1$\sigma$</a> <a href="155678?version=1&table=Contour73">-1$\sigma$</a> <br/> </ul> </ul> <b>Cross-section upper limits:</b> <ul> SUSY signals (best-expected SR combination): <a href="155678?version=1&table=Cross-sectionupperlimit1">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit2">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit3">Observed</a> <br/> $U(1)$ pair (min) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit6">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit5">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit4">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit7">Observed</a> <br/> $U(1)$ pair (YM) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit10">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit9">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit8">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit11">Observed</a> <br/> </ul> <b>Signal region distributions:</b> <ul> <a href="155678?version=1&table=SRdistribution2">$E_\mathrm{T}^\mathrm{miss}$ Sig. in SR-HM1</a> <br/> <a href="155678?version=1&table=SRdistribution3">$m_\mathrm{T}^\mathrm{min}(c)$ in SR-HM2</a> <br/> <a href="155678?version=1&table=SRdistribution4">$R_\mathrm{ISR}$ in SR-Comp1</a> <br/> <a href="155678?version=1&table=SRdistribution5">$R_\mathrm{ISR}$ in SR-Comp2</a> <br/> <a href="155678?version=1&table=SRdistribution6">$R_\mathrm{ISR}$ in SR-Comp3</a> <br/> <a href="155678?version=1&table=SRdistribution1">$R_\mathrm{ISR}$ in SR-Comp-1c</a> <br/> </ul> <b>Acceptances:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptance2">SR-HM1</a> <a href="155678?version=1&table=Acceptance3">SR-HM2</a> <a href="155678?version=1&table=Acceptance4">SR-HM3</a> <a href="155678?version=1&table=Acceptance5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptance6">SR-Comp1</a> <a href="155678?version=1&table=Acceptance7">SR-Comp2</a> <a href="155678?version=1&table=Acceptance8">SR-Comp3</a> <a href="155678?version=1&table=Acceptance1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptance9">SR-HM1</a> <a href="155678?version=1&table=Acceptance10">SR-HM2</a> <a href="155678?version=1&table=Acceptance11">SR-HM3</a> <a href="155678?version=1&table=Acceptance12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptance13">SR-HM1</a> <a href="155678?version=1&table=Acceptance14">SR-HM2</a> <a href="155678?version=1&table=Acceptance15">SR-HM3</a> <a href="155678?version=1&table=Acceptance16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptance17">SR-HM1</a> <a href="155678?version=1&table=Acceptance18">SR-HM2</a> <a href="155678?version=1&table=Acceptance19">SR-HM3</a> <a href="155678?version=1&table=Acceptance20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptance21">SR-HM1</a> <a href="155678?version=1&table=Acceptance22">SR-HM2</a> <a href="155678?version=1&table=Acceptance23">SR-HM3</a> <a href="155678?version=1&table=Acceptance24">SR-HM-Disc</a> <br/> </ul> <b>Efficiencies:</b> <ul> $U(1)$ pair (min): <a href="155678?version=1&table=Efficiency1">SR-HM1</a> <a href="155678?version=1&table=Efficiency2">SR-HM2</a> <a href="155678?version=1&table=Efficiency3">SR-HM3</a> <a href="155678?version=1&table=Efficiency4">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Efficiency5">SR-HM1</a> <a href="155678?version=1&table=Efficiency6">SR-HM2</a> <a href="155678?version=1&table=Efficiency7">SR-HM3</a> <a href="155678?version=1&table=Efficiency8">SR-HM-Disc</a> <br/> </ul> <b>Acceptance times efficiency:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptancetimesefficiency2">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency3">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency4">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptancetimesefficiency6">SR-Comp1</a> <a href="155678?version=1&table=Acceptancetimesefficiency7">SR-Comp2</a> <a href="155678?version=1&table=Acceptancetimesefficiency8">SR-Comp3</a> <a href="155678?version=1&table=Acceptancetimesefficiency1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptancetimesefficiency9">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency10">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency11">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptancetimesefficiency13">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency14">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency15">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptancetimesefficiency17">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency18">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency19">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptancetimesefficiency21">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency22">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency23">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency24">SR-HM-Disc</a> <br/> </ul> <b>Cutflow:</b> <ul> SUSY benchmarks: <a href="155678?version=1&table=Cutflow5">SR-HM1</a> <a href="155678?version=1&table=Cutflow6">SR-HM2</a> <a href="155678?version=1&table=Cutflow7">SR-HM3</a> <a href="155678?version=1&table=Cutflow8">SR-HM-Disc</a> <a href="155678?version=1&table=Cutflow2">SR-Comp1</a> <a href="155678?version=1&table=Cutflow3">SR-Comp2</a> <a href="155678?version=1&table=Cutflow4">SR-Comp3</a> <a href="155678?version=1&table=Cutflow1">SR-Comp-1c</a> <br/> LQ benchmarks: <a href="155678?version=1&table=Cutflow9">SR-HM1</a> <a href="155678?version=1&table=Cutflow10">SR-HM2</a> <a href="155678?version=1&table=Cutflow11">SR-HM3</a> <a href="155678?version=1&table=Cutflow12">SR-HM-Disc</a> <br/> </ul>

Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.

Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.

More…

Search for supersymmetry using vector boson fusion signatures and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2024) 116, 2024.
Inspire Record 2835159 DOI 10.17182/hepdata.156776

This paper presents a search for supersymmetric particles in models with highly compressed mass spectra, in events consistent with being produced through vector boson fusion. The search uses 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Events containing at least two jets with a large gap in pseudorapidity, large missing transverse momentum, and no reconstructed leptons are selected. A boosted decision tree is used to separate events consistent with the production of supersymmetric particles from those due to Standard Model backgrounds. The data are found to be consistent with Standard Model predictions. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a bino-like neutralino with a mass similar to that of the lightest chargino and second-to-lightest neutralino, both of which are wino-like. Lower limits at 95% confidence level on the masses of next-to-lightest supersymmetric partners in this simplified model are established between 117 and 120 GeV when the lightest supersymmetric partners are within 1 GeV in mass.

12 data tables

Observed and predicted background distributions of the BDT score in $\text{SR}_\text{2j}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.

Observed and predicted background distributions of the BDT score in $\text{SR}_{\geq3\text{j}}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the compressed SUSY simplified model with a bino-like LSP and wino-like NLSPs being considered. These are shown with $\pm1\sigma_\text{exp}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm1\sigma^{\text{SUSY}}_{\text{theory}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the ATLAS searches using the soft lepton signature is illustrated by the blue region while the limit imposed by the LEP experiments is shown in grey.

More…

Search for a light charged Higgs boson in $t \to H^\pm b$ decays, with $H^\pm \to cs$, in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 85 (2025) 153, 2025.
Inspire Record 2808022 DOI 10.17182/hepdata.154176

A search for a light charged Higgs boson produced in decays of the top quark, $t \to H^\pm b$ with $H^\pm \to cs$, is presented. This search targets the production of top-quark pairs $t\bar{t} \to Wb H^\pm b$, with $W \to \ell\nu$ ($\ell = e, \mu$), resulting in a lepton-plus-jets final state characterised by an isolated electron or muon and at least four jets. The search exploits $b$-quark and $c$-quark identification techniques as well as multivariate methods to suppress the dominant $t\bar{t}$ background. The data analysed correspond to 140 $\text{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the LHC between 2015 and 2018. Observed (expected) 95% confidence-level upper limits on the branching fraction $\mathscr{B}(t\to H^\pm b)$, assuming $\mathscr{B}(t\to Wb) + \mathscr{B}(t \to H^\pm (\to cs)b)=1.0$, are set between 0.066% (0.077%) and 3.6% (2.3%) for a charged Higgs boson with a mass between 60 GeV and 168 GeV.

5 data tables

Distributions of the dijet mass. The processes $t\bar{t}$(allHad), $tW$, Single top, $t\bar{t}H$, Other top, $W$ + jets, $Z$ + jets, and $VV$ listed are combined with the multijet background in the ‘Other’ category. The uncertainty band represents the combined statistical and systematic uncertainty of the prediction. Overlaid are the shapes for the $H^{\pm}_{80}$ and $H^{\pm}_{150}$ signal samples normalised to the total background prediction.

Data and background yields after the background-only fit of the BDT-score distribution for the $130\,$GeV signal mass BDT training. For comparison, the expected signal yield for $\mathscr{B}_{H^{\pm}}=1.0\%$ is added.

Observed (solid line) and expected (dotted line) upper limits on $\mathscr{B}_{H^{\pm}}$ for charged Higgs boson with masses between $60\,$GeV and $168\,$GeV, assuming $\mathscr{B}(t \to H^{\pm}(\to cs) b) = 1.0$. The $\pm 1 \sigma$ and $\pm 2 \sigma$ variations around the expected upper limit are indicated by the green and yellow bands, respectively.

More…

Version 2
Search for long-lived, massive particles in events with displaced vertices and multiple jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 200, 2023.
Inspire Record 2628398 DOI 10.17182/hepdata.137762

A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.

96 data tables

<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &gt; 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &gt; 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R &lt; 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>

Validation of background estimate in validation regions for the High-pT jet selections

Validation of background estimate in validation regions for the Trackless jet selections

More…

Search for new physics in the lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2022) 067, 2022.
Inspire Record 2618188 DOI 10.17182/hepdata.106058

A search for physics beyond the standard model (SM) in final states with an electron or muon and missing transverse momentum is presented. The analysis uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the CMS detector at the LHC in 2016–2018 and corresponding to an integrated luminosity of 138 fb−1. No significant deviation from the SM prediction is observed. Model-independent limits are set on the production cross section of W’ bosons decaying into lepton-plus-neutrino final states. Within the framework of the sequential standard model, with the combined results from the electron and muon decay channels a W’ boson with mass less than 5.7 TeV is excluded at 95% confidence level. Results on a SM precision test, the determination of the oblique electroweak W parameter, are presented using LHC data for the first time. These results together with those from the direct W’ resonance search are used to extend existing constraints on composite Higgs scenarios. This is the first experimental exclusion on compositeness parameters using results from LHC data other than Higgs boson measurements.

26 data tables

Product of signal selection efficiency and acceptance as a function of resonance mass for a SSM WPRIME decaying to electron or muon plus neutrino.It is calculated as the number of WPRIME signal events passing the selection process over the number of generated events. In the selection process there is no requirement on a minimum $M_T$ applied. The SSM WPRIME signal samples have been generated with PYTHIA 8.2. More details in paper

Observed and expected number of events in the electron and muon channels, collected during three years (2016, 2017, and 2018), for selected values of $M_T$ thresholds. The statistical and systematic uncertainties are added in quadrature providing the total uncertainty.

Observed and expected-from-SM number of events in the electron and muon channels, collected during three years (2016, 2017, and 2018), for two steps in the selection procedure: 1) one high-quality high-$p_T$ lepton with $p_T$ > 240(53) GeV for E(MU), and no other lepton in the event, with $M_T$ > 400(120) GeV for events with E(MU). 2) additionally the ratio of the lepton $p_T$ and $p_T^{miss}$ must be 0.4 < $p_T$/$p_T^{miss}$ < 1.5 and the azimuthal angular difference between them, ${\Delta\phi}$> 2.5. The signal yield for an SSM WPRIME of mass 5.6 TeV is also included.

More…

Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb$^{-1}$ of 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 155, 2023.
Inspire Record 2178061 DOI 10.17182/hepdata.131600

A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV.

7 data tables

The expected and observed upper limits at 95\% CL on the fiducial cross-section times branching ratio to two photons of a narrow-width ($\Gamma_{X}$ = 4 MeV) scalar resonance as a function of its mass $m_{X}$.

Diphoton invariant mass in the signal region using a 0.1 GeV binning.

Parametrization of the $C_{X}$ factor, defined as the ratio between the number of reconstructed signal events passing the analysis cuts and the number of signal events at the particle level generated within the fiducial volume, as function of $m_{X}$ obtained from the narrow width simulated signal samples produced in gluon fusion.

More…

Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$-boson mass in ${\sqrt{s}=13\,}$TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 031, 2023.
Inspire Record 2157951 DOI 10.17182/hepdata.134068

A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.

176 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Title: </b><em>Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$ boson mass in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector</em> <b>Paper website:</b> <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-02/">SUSY-2019-02</a> <b>Exclusion contours</b> <ul><li><b>Sleptons:</b> <a href=?table=excl_comb_obs_nominal>Combined Observed Nominal</a> <a href=?table=excl_comb_obs_up>Combined Observed Up</a> <a href=?table=excl_comb_obs_down>Combined Observed Down</a> <a href=?table=excl_comb_exp_nominal>Combined Expected Nominal</a> <a href=?table=excl_comb_exp_up>Combined Expected Up</a> <a href=?table=excl_comb_exp_down>Combined Expected Down</a> <a href=?table=excl_comb_obs_nominal_dM>Combined Observed Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_up_dM>Combined Observed Up $(\Delta m)$</a> <a href=?table=excl_comb_obs_down_dM>Combined Observed Down $(\Delta m)$</a> <a href=?table=excl_comb_exp_nominal_dM>Combined Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_exp_up_dM>Combined Expected Up $(\Delta m)$</a> <a href=?table=excl_comb_exp_down_dM>Combined Expected Down $(\Delta m)$</a> <a href=?table=excl_ee_obs_nominal>$\tilde{e}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_ee_exp_nominal>$\tilde{e}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_eLeL_obs_nominal>$\tilde{e}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_eLeL_exp_nominal>$\tilde{e}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_eReR_obs_nominal>$\tilde{e}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_eReR_exp_nominal>$\tilde{e}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_ee_obs_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_ee_exp_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_obs_nominal_dM>$\tilde{e}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_exp_nominal_dM>$\tilde{e}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_obs_nominal_dM>$\tilde{e}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_exp_nominal_dM>$\tilde{e}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mm_obs_nominal>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_mm_exp_nominal>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_mLmL_obs_nominal>$\tilde{\mu}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_mLmL_exp_nominal>$\tilde{\mu}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_mRmR_obs_nominal>$\tilde{\mu}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_mRmR_exp_nominal>$\tilde{\mu}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_mm_obs_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mm_exp_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_obs_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_exp_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_obs_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_exp_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_nominal_SR0j>Combined Observed Nominal SR-0j</a> <a href=?table=excl_comb_exp_nominal_SR0j>Combined Expected Nominal SR-0j</a> <a href=?table=excl_comb_obs_nominal_SR1j>Combined Observed Nominal SR-1j</a> <a href=?table=excl_comb_exp_nominal_SR1j>Combined Expected Nominal SR-1j</a> <li><b>Charginos:</b> <a href=?table=excl_c1c1_obs_nominal>Observed Nominal</a> <a href=?table=excl_c1c1_obs_up>Observed Up</a> <a href=?table=excl_c1c1_obs_down>Observed Down</a> <a href=?table=excl_c1c1_exp_nominal>Expected Nominal</a> <a href=?table=excl_c1c1_exp_nominal>Expected Up</a> <a href=?table=excl_c1c1_exp_nominal>Expected Down</a> <a href=?table=excl_c1c1_obs_nominal_dM>Observed Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_up_dM>Observed Up $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_down_dM>Observed Down $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Up $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Down $(\Delta m)$</a> </ul> <b>Upper Limits</b> <ul><li><b>Sleptons:</b> <a href=?table=UL_slep>ULs</a> <li><b>Charginos:</b> <a href=?table=UL_c1c1>ULs</a> </ul> <b>Pull Plots</b> <ul><li><b>Sleptons:</b> <a href=?table=pullplot_slep>SRs summary plot</a> <li><b>Charginos:</b> <a href=?table=pullplot_c1c1>SRs summary plot</a> </ul> <b>Cutflows</b> <ul><li><b>Sleptons:</b> <a href=?table=Cutflow_slep_SR0j>Towards SR-0J</a> <a href=?table=Cutflow_slep_SR1j>Towards SR-1J</a> <li><b>Charginos:</b> <a href=?table=Cutflow_SRs>Towards SRs</a> </ul> <b>Acceptance and Efficiencies</b> <ul><li><b>Sleptons:</b> <a href=?table=Acceptance_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_125>SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_125_130>SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_125>SR-1j $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_125_130>SR-1j $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <li><b>Charginos:</b> <a href=?table=Acceptance_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Efficiency</a></ul> <b>Truth Code snippets</b>, <b>SLHA</b> and <b>machine learning</b> files are available under "Resources" (purple button on the left)

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

More…

Version 2
Search for new phenomena in final states with photons, jets and missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 021, 2023.
Inspire Record 2094882 DOI 10.17182/hepdata.115570

A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.

33 data tables

The observed and expected (post-fit) yields in the control and validation regions. The lower panel shows the difference in standard deviations between the observed and expected yields, considering both the systematic and statistical uncertainties on the background expectation.

Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.

Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.

More…

Version 2
Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 11 (2021) 153, 2021.
Inspire Record 1894408 DOI 10.17182/hepdata.106115

A search is presented for new particles produced at the LHC in proton-proton collisions at $\sqrt{s} =$ 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb$^{-1}$, collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb$^{-1}$, collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.

55 data tables

Differential signal yields for various signal hypotheses.

Differential signal yields for various signal hypotheses.

Differential signal yields for various signal hypotheses.

More…