None
No description provided.
No description provided.
No description provided.
Measurements of the differential cross section for π − d elastic scattering in the backward angular region (−1 ⩽ cos θ cms ⩽ −0.98) are presented. These measurements were made at nine incident pion momenta P π ranging from 1.75 to 3.09 GeV/ c and at the largest values of q 2 [up to 7 (GeV/ c ) 2 ] ever reached experimentally; here q 2 is the momentum transfer squared. The differential cross section was found to decrease rapidly with increasing momentum d σ d Ω cms (180°) ∼ P −15.7 π , d σ d t ∼ (q 2 ) −12.8 . The data are compared with predictions of Regge and quark bag models.
Statistical errors only.
Differential cross sections for backward π − d elastic scattering (−1 ≦ cos θ c.m ≦ −0.98) have been measured at fourteen momenta from 0.98 to 1.76 GeV/ c and at 2.45 GeV/ c . Energy dependence of the cross section exibits a new wide structure at √ s ≈ 2.9 GeV. Possible mechanisms of the reaction accounting for this structure are presented. Experimental data are compared with theoretical calculations.
BEAM ERROR D(P)/P = 0.300 PCT.
BEAM ERROR D(P)/P = 0.300 PCT.
BEAM ERROR D(P)/P = 0.300 PCT.
None
.
None
No description provided.
No description provided.
No description provided.
None
BEAM ERROR D(P)/P = 0.300 PCT.
None
No description provided.
No description provided.
The experimental data on d-d collisions at 4.3, 6.3 and 8.9 GeV/ c , exhibiting the two-peak structure in the high-momentum parts of the secondary deuteron spectra at momentum transfers | t | ≈ 0.4–0.8 (GeV/ c ) 2 , are presented. An analysis of the results in terms of the multiple nucleon-nucleon scattering model is given. Some conclusions about the mechanism of the elastic and quasielastic d-d scattering at the above-mentioned momentum transfers are made.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We have measured the backward differential cross section in π−p elastic scattering at 31 momenta from 1.28 to 3.0 GeV/c. These measurements covered the center-of-mass angular range of 125°-178° corresponding to −0.570≲cosθc.m.≲−0.999. Considerable structure in the angular distribution is found. We compare these data with data from other experimets and to predictions made by the latest phase-shift solution. We find, in general, good agreement with other data in the few regions of overlap. The fits from the phase-shift solution do not accurately reproduce these data at low momenta below 1.9 GeV/c but give excellent agreement above this momentum.
No description provided.
No description provided.
No description provided.