Date

Normalized Small Y Cross-Sections for Neutrinos and anti-neutrinos at High-Energy

Barish, B.C. ; Bartlett, J.F. ; Bodek, A ; et al.
Phys.Rev.Lett. 39 (1977) 741, 1977.
Inspire Record 5717 DOI 10.17182/hepdata.50114

We present results on flux-normalized neutrino and antineutrino cross sections near y=0 from data obtained in the Fermilab narrow-band beam. We conclude that values of σ0=dσdy|y=0 are consistent with rising linearly with energy over the range 45<~Eν<~20.5 GeV. The separate averages of ν and ν¯, each measured to 4%, are equal to well within the errors. The best fit for the combined data gives σ0E=(0.719±0.035)×10−38 cm2/GeV at an average Eν of 100 GeV.

2 data tables

FE nucleus. The SIG/Enu is fitted to CONST(N=SIG)+CONST(N=T)*E.

FE nucleus. Averaged over the energies and beams.


Measurements of Muon-neutrino n and anti-Muon-neutrino n Charged Current Total Cross-Sections

Barish, B.C. ; Bartlett, J.F. ; Bodek, A. ; et al.
Phys.Rev.Lett. 39 (1977) 1595, 1977.
Inspire Record 5994 DOI 10.17182/hepdata.50102

Measurements of flux-normalized neutrino and antineutrino total charged-current cross sections (σ) in the energy range 45<E<205 GeV are presented. We see no evidence for the anomalous sharp rise in σν¯σν reported by earlier authors. The neutrino cross section rises linearly with energy and with σE about 18% smaller than other measurements below 10 GeV. The average antineutrino slope at 55 GeV is consistent with measurements at low energy; however, a (20 ± 10)% increase is indicated over our energy range.

3 data tables

No description provided.

No description provided.

No description provided.


Inclusive $\rho^0$ Production in Anti-neutrino $p$ Charged Current Interactions

Derrick, M. ; Gregory, P. ; Lopinto, F. ; et al.
Phys.Lett.B 91 (1980) 307-310, 1980.
Inspire Record 8534 DOI 10.17182/hepdata.6495

Using data from the Fermilab 15 ft hydrogen bubble chamber, we have studied inclusive ϱ 0 production in antineutrino-proton charged-current interactions. We measure (0.21 ± 0.03) ϱ 0 /event, corresponding to ϱ 0 / π − =0.12 ± 0.02. As a function of Q 2 and for hadronic masses above a threshold region, the ϱ 0 / π − ratio shows little variation. At least 50% of the ϱ 0 's are consistent with coming from the current fragmentation region. The results agree reasonably well with the predictions of the quark fragmentation model of Feynman and field.

4 data tables

AVERAGE BEAM ENERGY 31 GEV.

No description provided.

No description provided.

More…

Transverse momentum of charged hadrons observed in deep inelastic muon scattering

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 95 (1980) 306, 1980.
Inspire Record 154081 DOI 10.17182/hepdata.27176

The transverse momenta of charged hadrons produced in high energy muon-proton scattering have been studied. The average squared transverse momentum 〈 p 2 ⊥ 〉 shows a strong dependence on z = E h / v characteristic of intrinsic momentum effects and a significant rise as a function of s = W 2 . The W 2 , q 2 , x and z dependences of the data are compared with the predictions of a perturbative QCD model.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Experimental Study of Neutral Current and Charged Current Neutrino Cross-Sections

The CHARM collaboration Jonker, M. ; Panman, J. ; Udo, F. ; et al.
Phys.Lett.B 99 (1981) 265, 1981.
Inspire Record 156267 DOI 10.17182/hepdata.27136

Samples of 9200 muon-neutrino and 3800 muon-antineutrino interactions on nuclei were obtained with the fine-grain calorimeter of the CHARM Collaboration at the CERN 200 GeV narrow-band neutrino beam. The interactions were classified as either neutral-current or charged-current processes on an event-by-event basis. Neutral-current and charged-current cross sections in neutrino and antineutrino interactions are presented. From these results we deduce a statistically significant contribution of right-handed coupling to the neutral hadronic current, and a value of the electroweak mixing angle corresponding to sin 2 θ = 0.220 ± 0.014.

4 data tables

Measured charged current total cross section.

Measured charged current total cross section.

No description provided.

More…

Total Cross-sections and Nucleon Structure Functions in the Gargamelle {SPS} Neutrino / Anti-neutrino Experiment

The Gargamelle SPS collaboration Morfin, J.G. ; Weerts, H. ; Frodesen, A.G. ; et al.
Phys.Lett.B 104 (1981) 235-238, 1981.
Inspire Record 165895 DOI 10.17182/hepdata.31166

Total neutrino and antineutrino cross sections in the energy range 15 to 150 GeV, and the nucleon structure functions, F 2 ( x , Q 2 ) and xF 3 ( x , Q 2 ) in the Q 2 range 0.5 to 50 (GeV/ c ) 2 have been measured using a data sample of 3000 neutrino and 3800 antineutrino events. The structure functions show a weak Q 2 dependence at different x values.

4 data tables

Measured charged current total cross section.

Measured charged current total cross section.

ERRORS CONTAIN 10 P.C. SYSTEMATIC ERROR WHICH HAS BEEN LINEARLY ADDED TO THE STATISTICAL ERROR.

More…

A Measurement of the Nucleon Structure Function From Muon Carbon Deep Inelastic Scattering at High $Q^2$

The BCDMS collaboration Bollini, D. ; Frabetti, P.L. ; Heiman, G. ; et al.
Phys.Lett.B 104 (1981) 403-408, 1981.
Inspire Record 166160 DOI 10.17182/hepdata.71276

Deep inelastic scattering cross sections have been measured with the CERN SPS muon beam at incident energies of 120 and 200 GeV. Approximately 100 000 events at each energy are used to obtain the structure function F 2 ( x , Q 2 ) in the kinematic region 0.3< x <0.7 and 25 GeV 2 < Q 2 <200 GeV 2 .

8 data tables

No description provided.

No description provided.

No description provided.

More…

Forward Produced Protons and Anti-protons in Deep Inelastic Muon Proton Scattering

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 103 (1981) 388, 1981.
Inspire Record 166178 DOI 10.17182/hepdata.31185

A significant rate of forward proton and antiproton production has been observed in 120 and 280 GeV muon-proton scattering. The z and p T 2 distributions are presented. The dependence of the normalized production cross section on the muon variables x and Q 2 is studied.

2 data tables

No description provided.

No description provided.


Measurement of Quark Momentum Distributions in the Proton Using an Anti-neutrino Probe

Barnes, V.E. ; Carman, T.S. ; Carmony, D.D. ; et al.
Phys.Rev.D 25 (1982) 1-21, 1982.
Inspire Record 166272 DOI 10.17182/hepdata.24027

We present the results of a study of the inclusive reaction ν¯p→μ+X0 for antineutrino energies from 5 to 150 GeV. The data were obtained by exposing the Fermi National Accelerator Laboratory hydrogen-filled 15-foot bubble chamber to a wide-band antineutrino beam. This is the first high-energy antineutrino experiment in which a pure proton target was used. The experimental problems of selecting the required sample of charged-current antineutrino-induced events are discussed in detail. A Monte Carlo simulation of the experiment is used to provide correction factors to the measured distributions. A measurement of the x dependence of the inelasticity (y) distributions gives the proton structure functions F2ν¯p(x) and xF3ν¯p(x) up to an overall normalization constant. When expressed in terms of the quark-parton model, the quark distributions u(x) and d¯(x)+s¯(x) are determined. The results for u(x) are found to be in excellent agreement with models based on fits to electron and muon scattering data. Using these results to fix the u(x) normalization, an absolute measurement is made of x[d¯(x)+s¯(x)], the antiquark momentum distribution.

1 data table

VALUES OF Q**2 ASSOCIATED WITH THE FOLLOWING TABLE ARE.... 2.2 , 3.5 , 3.4 , 4.4 , 4.7 , 5.0 , 6.0 , 6.5 , 7.7 , 8.0.


Measurement of the Proton Structure Function F(2) in Muon - Hydrogen Interactions at 120-GeV and 280-GeV

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 105 (1981) 315-321, 1981.
Inspire Record 167336 DOI 10.17182/hepdata.31046

The proton structure function F 2 has been measured in the range 2.5 ⪕ Q 2 ⪕ 170 GeV 2 and 0.03 ⪕ x ⪕ 0.65 . Scaling violation is clearly seen in the data. Results of fits to leading-order QCD are presented, together with values of the scale-breaking parameter λ.

40 data tables

No description provided.

No description provided.

No description provided.

More…