The total cross section for hadron production by e+e− annihilation has been measured at center-of-mass energies between 2.4 and 5.0 GeV. Aside from the very narrow resonances ψ(3105) and ψ(3695), the cross section varies between 32 and 17 nb over this region with structure in the vicinity of 4.1 GeV.
No description provided.
MEAN CHARGED MULTIPLICITY. ERRORS ARE STATISTICAL ONLY.
The product of the photoproduction cross section at 11.1 GeV for ψ(3105) on nucleons times the branching ratio for ψ into e+e− is less than 75 pb, at the 90% confidence level. This result implies a ψ-nucleon total cross section of less than 1.2 mb.
The branching ratio for J/PSI --> E+ E- is taken as 0.06.
In this paper a comparison of the general features of the reactions K ± p→Q ± p (1) at incident momentum 8.25 GeV/ c is presented. The relevant data derive from events yielding four-constraint fits to the reactions K ± p→K ± π + π − p in exposures of the CERN 2m HBC to RF-separated K + and K − beams. The (K ππ ) effective mass distributions, production angular distributions in the Q region (1.2⩽ M (K ππ )⩽1.5 GeV) and corresponding decay angular distributions are exhibited, and background effects due to N ∗ and Δ production are systematically studied. In particular, it is found that the distributions d σ /d t ′ and d σ /d t for reactions (1) are adequately described by exponential functions over the interval 0.05–0.35 GeV 2 , and exhibit a cross-over effect for momentum transfer squared −0.1 GeV 2 . For both reactions a flattening of d σ /d t ′ for t ′ < 0.05 GeV 2 is observed. By studying the Chew-Low plots and the effects of the different cuts it was found that this flattening cannot be attributed to amplitudes with net s -channel helicity flip different from zero, at least at these energies.
ABOUT 7 PCT RELATIVE NORMALIZATION UNCERTAINTY FOR K+ AND K- SAMPLES.
FITS TO D(SIG)/DT AND D(SIG)/DTP FOR Q+ AND Q- PRODUCTION TO DETERMINE CROSS-OVER POSITIONS. DATA HAVE MASS CUTS TO SELECT K*0 AND REMOVE DEL++ AND DEL0. MIN IS THE MINIMUM VALUE OF -T FOR THE RELEVANT (K PI PI) MASS.
An amplitude analysis for the reaction π + p → π + π − π 0 Δ ++ at 7 GeV/ c has been performed using the isobar model for the 3 π system. The 3 π -mass covers the range from 0.82 to 1.90 GeV. We observe strong A 2 production. The spin parity of the ω ∗ (1700) is determined to be 3 − . No significant A 1 production can be seen.
No description provided.
FROM INTEGRATING BREIT-WIGNER FITS TO THE JP=3- AMPLITUDE FOR -T < 0.8 GEV**2.
The reactions e+e−→e+e− and e+e−→μ+μ− have been measured at center-of-mass energies 3.0, 3.8, and 4.8 GeV and production angles of 50°<θ<130° over all azimuthal angles. Agreement with quantum electrodynamics is excellent. New limits for cutoff parameters in quantum-electrodynamic-breakdown models are given.
No description provided.
No description provided.
We report on the results at ADONE to study the properties of the newly found 3.1-BeV particle.
No description provided.
We have observed a very sharp peak in the cross section for e+e−→hadrons, e+e−, and possibly μ+μ− at a center-of-mass energy of 3.105±0.003 GeV. The upper limit to the full width at half-maximum is 1.3 MeV.
No description provided.
None
No description provided.
No description provided.
The differential cross section d σ d t′ for the charge-exchange process π + p → π 0 ( π + p) at 8, 16 and 23 GeV/ c is presented for several regions of the π + p effective mass. It is found that the dip at t ′ ≈ 0.6 (GeV/ c ) 2 which is observed in the Δ(1236) mass band becomes a less pronounced structure in the higher mass regions. However, while the slope of the d σ d t′ distributions in the near-forward direction decreases strongly with increasing π + p mass, there is no evidence that the observed structure moves to higher values of t ′ as the π + p mass increases. These results are consistent with a Regge-exchange picture where the position of the dip is determined by the exchanged trajectory, but are inconsistent with a simple geometrical picture.
TP DEPENDENCE FOR FOUR <PI+ P> MASS INTERVALS.
We have measured the crosss section for the reaction e + e − → 4 π ± in the energy range 1 2–3.0 GeV.No statistically significant evidence for a new vector meson in the ϱ″ region is found.
No description provided.