The Brookhaven Alternating Gradient Synchrotron polarized proton beam incident on a beryllium target was used for inclusive Λ production at beam momenta of 13.3 and 18.5 GeV/c. The beam polarization was transverse to the beam direction with magnitude 0.63 at 13.3 GeV/c and 0.40 at 18.5 GeV/c. The Λ polarization was measured and found to be in agreement with results from earlier experiments which used unpolarized proton beams. Analyzing power AN and spin transfer DNN of the Λ’s were both measured and compared with a hyperon-polarization model in which the polarization arises from a Thomas-precession effect. There is good agreement with its predictions: AN=0 and DNN=0. In particular, our measurement of 〈DNN〉=-0.009±0.015 supports the idea that the valence quarks carry all of the hadron spin, since this assumption is implicit in the model’s use of SU(6) wave functions to form final-state hadrons from beam fragments and sea quarks. The presence of substantial KS samples at both beam momenta and Λ¯’s at 18.5 GeV/c prompted a measurement of their analyzing powers, which yielded AN(KS)=-0.094±0.012 at 13.3 GeV/c beam momentum and -0.076±0.015 at 18.5 GeV/c, and AN(Λ¯)=0.03±0.10.
No description provided.
No description provided.
No description provided.
We have measured the analyzing power in π+, π−, and KS0 production by a polarized proton beam at 13.3 and 18.5 GeV/c. The data cover the central and the beam fragmentation region, in the transverse-momentum range up to 2 GeV/c. The results indicate that sizable effects are present at high xF and also persist into the hard-scattering region for KS0 and π+. A zero value of the analyzing power was observed for π− production.
No description provided.
No description provided.
No description provided.
The reported data are given for the mean angles measured rather than for the central angles. The data are normalized to the most recent Evaluated Nuclear Data File evaluated angle-integrated elastic-scattering cross section and refitted with a Legendre polynomial expansion.
Measured values of the N-P elastic scattering angular distributions. Data are normalized to the Breit-Hopkins total elastic cross section after radiative capture correction.
We measured the capture-fission excitation functions for the 32S+181Ta reaction and the 38S+181Ta reaction. (The radioactive 38S beam was produced by projectile fragmentation.) In the 32S-induced reaction, an incomplete fusion component was observed at high energies, with an average linear momentum transfer corresponding to the escape of an α particle. The deduced interaction barrier heights were 130.7±0.3 and 124.8±0.3 MeV for the 32S- and 38S-induced reactions, respectively. No differences between the two reactions were observed beyond a simple shift in the interaction barrier height.
A typical beam energy resolution was 0.01 TO 0.1 MeV. In the S32-induced reaction, an incomplete fussion component was observed at high energies, with an average linear momentum transfer corresponding to th e escape of an alpha patticle. The deduced interaction barrier heights were 130 .7+-0.3 and 124.8+-0.3 MeV for the S32 and S38-induced reactions respectively.
A typical beam energy resolution was 0.01 TO 0.1 MeV.
Reaction mechanisms and multifragmentation processes have been studied for 64Zn+58Ni collisions at intermediate energies with the help of antisymmetrized molecular dynamics (AMD-V) model calculations. Experimental energy spectra, angular distributions, charge distributions, and isotope distributions, classified by their associated charged particle multiplicities, are compared with the results of the AMD-V calculations. In general the experimental results are reasonably well reproduced by the calculations. The multifragmentation observed experimentally at all incident energies is also reproduced by the AMD-V calculations. A detailed study of AMD-V events reveals that, in nucleon transport, the reaction shows some transparency, whereas in energy transport the reaction is much less transparent at all incident energies studied here. The transparency in the nucleon transport indicates that, even for central collisions, about 75% of the projectile nucleons appear in the forward direction. In energy transport about 80% of the initial kinetic energy of the projectile in the center- of-mass frame is dissipated. The detailed study of AMD-V events also elucidates the dynamics of the multifragmentation process. The study suggests that, at 35A MeV, the semitransparency and thermal expansion are the dominant mechanisms for the multifragmentation process, whereas at 49A MeV and higher incident energies a nuclear compression occurs at an early stage of the reaction and plays an important role in the multifragmentation process in addition to that of the thermal expansion and the semitransparency.
No description provided.
Average summed transverse momentum.
After summarizing the properties of the socalled Dalitz Array (DA), which is a genuine characteristics of a resonance, we determine those of the well known ε, γ, andA2 resonances produced in theK−p→π+π−π0Λ final state at 4.2 Ge V/c. A tentative measurement of the DA of theA1 meson produced backwards in the reactionK−p→π+π+π−Σ− is also presented. The data for this analysis come from the high statistics (130 events/μb) experiment performed by the ACNO Collaboration.
FROM FITTING MOMENTS OF DALITZ SERIES WITH BREIT-WIGNER RESONANCE PLUS BACKGROUND. FOR -T < 1.0 GEV**2, CROSS SECTION IS 14 +- 2.5 MUB.
BACKWARD CROSS SECTION USING DALITZ SERIES.
Results are presented on multihadron production by e+e- annihilation from the Mark I and Mark II detectors at SPEAR. Other-than the narrow resonances psi(3095) and psi'(3634), the total hadronic cross section varies between 36.5 and 6.4 nb over the center-of-mass energy range 2.6 to 7.8 GeV with complicated structure near 4.1 GeV not completely resolved by these measurements. Evidence for scaling of inclusive momentum distributions of hadrons is presented.
No description provided.
MORE DETAILED TABULATION OF R IN THE TRANSITION REGION.
CHARGED SINGLE PARTICLE INCLUSIVE DISTRIBUTIONS FROM THIS EXPERIMENT ARE GIVEN IN THE RECORD OF G. G. HANSON, TBILISI CONFERENCE 1976, SLAC-PUB-1814.
The total proton-proton cross section (excluding Coulomb scattering) has been measured at energies from 410 Mev up to 2.6 Bev, using external beams from the Cosmotron. Fast counting equipment was used to measure the attenuation of the beams through polyethylene, carbon, and liquid H2 absorbers. At each energy E, σp−p(E, Ω) was measured as a function of the solid angle Ω subtended by the rear counter at the center of the absorber. The total cross section σp−p was obtained by a least squares straight line extrapolation to Ω=0. The measured σp−p as a function of energy rises sharply from 26.5 mb at 410 Mev to 47.8 mb at 830 Mev and then remains approximately constant out to 1.4 Bev, above which energy it decreases gradually to about 42 mb at 2.6 Bev. Using the same equipment and procedure, we have also measured the D2O-H2O difference cross section, called "σp−n," for protons over the same energy range. From a comparison of "σp−n," and σp−p, with the n−p and n−d measurements of Coor et al. at 1.4 Bev, it is apparent that one nucleon is "shielded" by the other in the deuteron. This effect is not present at energies below 410 Mev. Comparing the measured p−p and "p−n" (corrected) cross sections with the results of other high-energy experiments, one may infer the following conclusions: (1) The sharp rise in σp−p from 400 to 800 Mev results from increasing single pion production, which may proceed through the T=32, J=32 excited nucleon state. (2) Above 1 Bev the inelastic (meson production) p−p cross section appears to be approximately saturated at 27-29 mb. (3) The rise in cross section for n−p interaction in the T=0 state, associated with the rise in double pion production, implies that double meson production also proceeds through the T=32 nucleon state. (4) The probable equality of σp−d and σn−d at 1.4 Bev implies the validity of charge symmetry at this energy.
'1'.
No description provided.
No description provided.
The polarization parameter in elastic π−p scattering has been measured, at the Berkeley 184-in. synchrocyclotron, with the use of a polarized proton target. At 318-, 337-, and 390-MeV incident pion kinetic energy, the angular range from 70° to 180° in the center-of-mass system was covered. At 229 MeV, polarization measurements were made in the angular range 150° to 180°. Phase-shift analyses, using these and other published data, were made at the two lowest energies.
No description provided.
No description provided.
No description provided.
Measurements of π0 photoproduction have been made at 235, 285, 335, and 435 MeV, using a beam of polarized x rays. Using a calculated value of polarization, an analysis is made which indicates a possible need for γ, ρ, π, or γ, ω, π coupling. The polarization calculations are checked by measurements made as a function of photon production angle at 335 MeV.
No description provided.