We have studied single diffraction dissociation ( p p→ p X ) in proton-antiproton collisions at √ s =1.8TeV, covering the ranges 3⪅ M X ⪅200 GeV and 0.05⪅| t |⪅0.11 (GeV/ c ) 2 . Parameterizing the production to be of the form dσ ( d t d M 2 X ) = (M 2 X ) −α exp (bt) , we obtain α = 1.13±0.07 and b = 10.5±1.8(GeV/ c ) −2 . The total single diffraction dissociation cross section is 2 σ SD =8.1±1.7 mb. Comparisons are made to previous lower energy data, and to an earlier measurement by us at the same energy.
Total single diffraction cross section.
We have studied the reactions K − p → K − π + π − p and K − p → K 0 π − π 0 p at 14.3 GeV/ c using respectively 15 992 and 3723 events. Partial-wave analysis of the region 1.0 < m (K ππ ) < 1.7 GeV have been made using a modified version of the method developed at the University of Illinois.
No description provided.
Photon proton cross sections for elastic light vector meson production, σelνp, inelastic diffractive production, σndνp, non-diffractive production, σdνp, as well as the total cross section, σtotνp, have been measured at an average υp center of mass energy of 180 GeV with the ZEUS detector at HERA. The resulting values are σelνp = 18 ± 7 μb, σdνp = 33 ± 8 μb, σndνp = 91 ± 11 μb, and σtotνp 143 ± 17 μb, where the errors include statistical and systematic errors added in quadrature.
Errors contain both statistics and systematics.
We present experimental results on a number of K − p reactions at 14.3 GeV/ c that have three bodies in the final state. The final states are K − ω p , K − π p , Λπ + π − , Λ K + K − , Λp p , K ∗ − ω p , Λ(1520) K + K − and Λ(1520) p p . Whenever, with one exception explained by the Zweig rule, there is a K − or a proton in the final state, there is a diffractive-like threshold enhancement in the mass spectrum of the two recoiling particles. These enhancements account for a large fraction of the events in all but the Λπ + π − final state, where they cannot occur, and which is dominated by resonance production. We find evidence for the Q 1 (1300) decaying into K − ω .
THE DIFFRACTION DISSOCIATION CROSS SECTIONS ARE FOR DIFFRACTIVE THRESHOLD ENHANCEMENTS IN THE TWO-BODY MASS SPECTRA (WITHIN 500 MEV CM ENERGY OF THRESHOLD).
We report the first observation of diffractively produced W bosons. In a sample of W -> e nu events produced in p-barp collisions at sqrt{s}=1.8 TeV, we find an excess of events with a forward rapidity gap, which is attributed to diffraction. The probability that this excess is consistent with non-diffractive production is 1.1 10^{-4} (3.8 sigma). The relatively low fraction of W+Jet events observed within this excess implies that mainly quarks from the pomeron, which mediates diffraction, participate in W production. The diffractive to non-diffractive W production ratio is found to be R_W=(1.15 +/- 0.55)%.
No description provided.
We have analysed the reaction π + p → pπ + π + π − at 16 GeV/c by means of the prism plot analysis (PPA) as proposed by Pless et al. We have separated ten reaction channels contributing to the final state pπ + π + π − and present the results in terms of partial and differential cross sections, invariant mass and decay angular distributions. We show that the PPA is a self-controlling method which is demonstrated by the emergence of a broad (3π) + enhancement around 1800 MeV decaying into ρ 0 π + .
PARTIAL CROSS SECTIONS FOR THE (P PI+ PI+ PI-) FINAL STATE.
An analysis of theA-dependence of the target-diffractive cross-section is presented. Data on thet-dependence of the cross section are fitted in the usual exponential form. The mean multiplicity of negative particles produced diffractively is found not to be sensitive to the nuclear mass. TheA-dependence of the emitted proton multiplicity and the angular distributions of the produced charged particles suggest re-scattering of the emitted particles on other nucleons of the nucleus. All these facts are compared with results obtained by Monte-Carlo simulation according to a two-component Dual Parton Model.
For target-diffractive cross-section.
For target-diffractive cross-section.
Multiplicities for the diffractive system.
This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with $\xl>0.97$, where $\xl$ is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of $t$, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section on $t$ is measured in the interval $0.073<|t|<0.4$~$\gevtwo$ and is found to be described by an exponential shape with the slope parameter $b=\tslopeerr$. The diffractive structure function $\ftwodfour$ is presented as a function of $\xpom \simeq 1-\xl$ and $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and averaged over the $t$ interval $0.073<|t|<\ftwodfourtmax$~$\gevtwo$ and the photon virtuality range $5
The measured distribution of T, the squared momentum transfer to the virtual pluton.
Slope of the T distribution.
The structure function F2(NAME=D4).
None
'1'.
On 8 K events of the reaction p p π + π − at 7.23 GeV/ c simple selection on angular parameters is performed yielding a sample of events with the typical features of diffraction dissociation. A cross section of 1.22 ± 0.08 mb (in two vertices) and a slope of the t distribution of 12.6 ± 1.0 GeV −2 for − t < 0.1 GeV 2 are obtained for the diffraction fraction dissociation p → p π + π − + c.c. Using an analogous selection procedure, another sample of events is isolated that is characterized by double resonance production. Cross sections for Δ Δ and Δ Δ ′ + c.c. production amount to 1.27 ± 0.09 mb and 0.23 ± 0.07 mb respectively. Diffraction dissociation and double resonance production together make up for 87% of the total cross section for the reaction p p → p p π + π − , which is 3.11 ± 0.13 mb.
No description provided.