The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.
DIPION CHANNEL CROSS SECTION.
THE TOTAL CROSS SECTION WAS OBTAINED BY THE AUTHORS FROM A FIT TO THE SINGLE ARM DATA OF S. STEIN ET AL., PR D12, 1884 (1975).
No description provided.
The properties of the diffractive peak observed in the mass spectra of systems recoiling against observed high-momentum protons emerging from pp collisions at the CERN ISR have been investigated. The cross sections in this peak have been found to have a steep t dependence which flattens out as | t | increases. The high mass side of the peak varies approximately as 1/ M 2 (where M is the missing mass of the recoiling system) and scales well in terms of the variable M 2 / s . The position of the maximum has been observed to move to lower values of M 2 / s as the kinematic boundary of this variable decreases with increasing s . The measured cross sections, integrated up to M 2 / s =0.05, rise by (15±5)% over the s range 549 to 1464 GeV 2 .
No description provided.
No description provided.
No description provided.
Polarization in π − p elastic scattering, with emphasis over the backward region, has been measured at 2.93 and 3.25 GeV/ c . We observe large changes in polarization compared with existing data above and below these energies. Our data may be useful in determining the properties of resonances and in understanding baryon exchanges.
THESE DATA, TOGETHER WITH THE FORWARD SCATTERING POLARIZATION MEASUREMENTS, ARE TABULATED IN THE RECORD OF P. AUER ET AL., PRL 37, 83 (1976).
The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.
ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.
None
No description provided.
No description provided.
We observe a resonancelike structure in the total cross section for hadron production by e+e− colliding beams at a mass of 4414 ± 7 MeV having a total width Γ=33±10 MeV. From the area under this resonance, we deduce the partial width to electron pairs to be Γee=440±140 eV. Further structure of comparable width is present near 4.1 GeV.
No description provided.
We present results of a K − d experiment performed with the 81 cm Saclay deuterium bubble chamber which was exposed to a K − beam at 4 momenta between 680 and 840 MeV/ c at the CERN PS. Cross sections were measured for inelastic two- and three-body K − n reactions on the basis of 5200 events/mb. Resonance production in the three-body reactions is discussed. In addition, differential cross sections and polarisations are presented for inelastic two-body reactions.
CROSS SECTIONS FOR TWO-BODY REACTIONS.
CROSS SECTIONS FOR THREE-BODY REACTIONS.
CROSS SECTIONS FOR K- P REACTIONS.
The reactions e + d → e ' + p S + p + π − and e + d → e ' + n S + n + π + were measured detecting electron and pion in coincidence at an invariant hadronic mass of 2.19 GeV. The measurements were performed at electron four-momentum transfer squared of f 2 = 0.70 and 1.35 GeV 2 in the range of t = ( γ v − π ) 2 between t min and −1.0 GeV 2 . The cross section d 2 σ / dtdφ of the reaction e + n → e' + p + π − was determined.
ACTUALLY RATIO OF PI- TO PI+ PRODUCTION OFF DEUTERIUM.
No description provided.
No description provided.
The production of multipion events by e + e − annihilation has been measured at centre of mass energies 915,990 and 1076 MeV. Both channels e + e − → π + π − π o and e + e − → π + π − π + π − have been analysed. An energy threshold effect analysed. An energy threshold effect around 919 MeV ( m ω + m π o ) has been evidenced for the π + π − π o π o channel and the cross section is consistent with the quasi two-body process e + e − → ωπ o . The cross section for π + π − π + π − is lower by an order of magnitude and increases with the energy.
SYSTEMATIC ERROR INCLUDED. RADIATIVE EFFECT (<15 PCT) INCLUDED.
MULTIHADRON PRODUCTION CROSS SECTION DEDUCED AS SUM OF FOUR PION CHANNELS.
At the Bonn 2.5 GeV electron synchrotron the angular distribution of the target asymmetry T = (σ↑ − σ↓) (σ↑ + σ↓) for the reaction γp↑ → π + n was measured at a mean photon energy of 700 MeV and pion CM-angles from 50° to 155°. The combination of a 3 He-cryostat, polarizing the free protons in the target up to 65%, with a large acceptance magnet for pion detection led to statistical errors of the target asymmetry comparable with those of cross section measurements.
No description provided.