Showing 2 of 2 results
A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons ($\tau_\mathrm{h}$) that originate from genuine tau leptons in the CMS detector against $\tau_\mathrm{h}$ candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a $\tau_\mathrm{h}$ candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine $\tau_\mathrm{h}$ to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient $\tau_\mathrm{h}$ reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved $\tau_\mathrm{h}$ reconstruction method are validated with LHC proton-proton collision data at $\sqrt{s} =$ 13 TeV.
Decay mode confusion matrix. For a given generated decay mode, the fractions of reconstructed tau_h in different decay modes are given, as well as the fraction of generated tau_h that are not reconstructed. Both the generated and reconstructed tau_h need to fulfil pt > 20 GeV and |eta| < 2.3. The tau_h candidates come from a Z to tau tau event sample with m(tau, tau) > 50 GeV.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiency for quark and gluon jets to pass different tau identification discriminators versus the efficiency for genuine tau_h. The upper two plots are obtained with jets from the W+jets simulated sample and the lower two plots with jets from the tt sample. The left two plots include jets and genuine tau_h with pt < 100 GeV, whereas the right two plots include those with pt > 100 GeV. The working points are indicated as full circles. The efficiency for jets from the W+jets event sample, enriched in quark jets, to pass the discriminators is higher compared to jets from the tt event sample, which has a larger fraction of gluon and b-quark jets. The jet efficiency for a given tau_h efficiency is larger for jets and tau_h with pt < 100 GeV than for those with pt > 100 GeV. Compared with the previously used MVA discriminator, the DEEPTAU discriminator reduces the jet efficiency for a given tau_h efficiency by consistently more than a factor of 1.8, and by more at high tau_h efficiency. The additional gain at high pt comes from the inclusion of updated decay modes in the tau_h reconstruction, as illustrated by the curves for the previously used MVA discriminator but including reconstructed tau_h candidates with additional decay modes.
Efficiencies for simulated tau_h decays with |eta| < 2.3 to pass the following reconstruction and identification requirements: to be reconstructed in any decay mode with pt > 20 GeV and |eta| < 2.3 (black dashed line), to be reconstructed in a decay mode except for those with missing charged hadrons (labelled ''2-prong'' and shown as full black line), and to be reconstructed in a decay mode except the 2-prong ones and to pass the Loose, Medium, or Tight working point of the Djet discriminator (blue lines), obtained with a Z to tau tau event sample. The efficiencies are shown as a function of the visible genuine tau_h pt obtained from simulated decay products.
Efficiency for electrons against efficiency for genuine tau_h to pass the MVA and De discriminators, separately for electrons and tau_h with 20 < pt < 100 GeV (left) and pt > 100 GeV (right). Vertical bars correspond to the statistical uncertainties. The tau_h candidates are reconstructed in one of the tau_h decay modes without missing charged hadrons. Compared with the MVA discriminator, the De discriminator reduces the electron efficiency by more than a factor of two for a tau_h efficiency of 70% and by more than a factor of 10 for τh efficiencies larger than 88%. Furthermore, working points (indicated as full circles) are now provided for previously inaccessible tau_h efficiencies larger than 90%, for a misidentification efficiency between 0.3 and 8%.
Efficiency for electrons against efficiency for genuine tau_h to pass the MVA and De discriminators, separately for electrons and tau_h with 20 < pt < 100 GeV (left) and pt > 100 GeV (right). Vertical bars correspond to the statistical uncertainties. The tau_h candidates are reconstructed in one of the tau_h decay modes without missing charged hadrons. Compared with the MVA discriminator, the De discriminator reduces the electron efficiency by more than a factor of two for a tau_h efficiency of 70% and by more than a factor of 10 for τh efficiencies larger than 88%. Furthermore, working points (indicated as full circles) are now provided for previously inaccessible tau_h efficiencies larger than 90%, for a misidentification efficiency between 0.3 and 8%.
Efficiency for electrons against efficiency for genuine tau_h to pass the MVA and De discriminators, separately for electrons and tau_h with 20 < pt < 100 GeV (left) and pt > 100 GeV (right). Vertical bars correspond to the statistical uncertainties. The tau_h candidates are reconstructed in one of the tau_h decay modes without missing charged hadrons. Compared with the MVA discriminator, the De discriminator reduces the electron efficiency by more than a factor of two for a tau_h efficiency of 70% and by more than a factor of 10 for τh efficiencies larger than 88%. Furthermore, working points (indicated as full circles) are now provided for previously inaccessible tau_h efficiencies larger than 90%, for a misidentification efficiency between 0.3 and 8%.
Efficiency for electrons against efficiency for genuine tau_h to pass the MVA and De discriminators, separately for electrons and tau_h with 20 < pt < 100 GeV (left) and pt > 100 GeV (right). Vertical bars correspond to the statistical uncertainties. The tau_h candidates are reconstructed in one of the tau_h decay modes without missing charged hadrons. Compared with the MVA discriminator, the De discriminator reduces the electron efficiency by more than a factor of two for a tau_h efficiency of 70% and by more than a factor of 10 for τh efficiencies larger than 88%. Furthermore, working points (indicated as full circles) are now provided for previously inaccessible tau_h efficiencies larger than 90%, for a misidentification efficiency between 0.3 and 8%.
Efficiency for electrons against efficiency for genuine tau_h to pass the MVA and De discriminators, separately for electrons and tau_h with 20 < pt < 100 GeV (left) and pt > 100 GeV (right). Vertical bars correspond to the statistical uncertainties. The tau_h candidates are reconstructed in one of the tau_h decay modes without missing charged hadrons. Compared with the MVA discriminator, the De discriminator reduces the electron efficiency by more than a factor of two for a tau_h efficiency of 70% and by more than a factor of 10 for τh efficiencies larger than 88%. Furthermore, working points (indicated as full circles) are now provided for previously inaccessible tau_h efficiencies larger than 90%, for a misidentification efficiency between 0.3 and 8%.
Efficiency for electrons against efficiency for genuine tau_h to pass the MVA and De discriminators, separately for electrons and tau_h with 20 < pt < 100 GeV (left) and pt > 100 GeV (right). Vertical bars correspond to the statistical uncertainties. The tau_h candidates are reconstructed in one of the tau_h decay modes without missing charged hadrons. Compared with the MVA discriminator, the De discriminator reduces the electron efficiency by more than a factor of two for a tau_h efficiency of 70% and by more than a factor of 10 for τh efficiencies larger than 88%. Furthermore, working points (indicated as full circles) are now provided for previously inaccessible tau_h efficiencies larger than 90%, for a misidentification efficiency between 0.3 and 8%.
Efficiency for muons against efficiency for simulated τh to pass the cutoff-based and Dμ discriminators, separately for muons and tau_h with 20 < pt < 100 GeV (left) and pt > 100 GeV (right). The four working points are indicated as full circles. Vertical bars cor- respond to the statistical uncertainties. In both pt regimes, the D_m discriminator rejects up to a factor of 10 more muons at tau_h efficiencies around 99%, and it leads to an increase of the τh efficiency for a similar background rejection by about 0.5%
Efficiency for muons against efficiency for simulated τh to pass the cutoff-based and Dμ discriminators, separately for muons and tau_h with 20 < pt < 100 GeV (left) and pt > 100 GeV (right). The four working points are indicated as full circles. Vertical bars cor- respond to the statistical uncertainties. In both pt regimes, the D_m discriminator rejects up to a factor of 10 more muons at tau_h efficiencies around 99%, and it leads to an increase of the τh efficiency for a similar background rejection by about 0.5%
Efficiency for muons against efficiency for simulated τh to pass the cutoff-based and Dμ discriminators, separately for muons and tau_h with 20 < pt < 100 GeV (left) and pt > 100 GeV (right). The four working points are indicated as full circles. Vertical bars cor- respond to the statistical uncertainties. In both pt regimes, the D_m discriminator rejects up to a factor of 10 more muons at tau_h efficiencies around 99%, and it leads to an increase of the τh efficiency for a similar background rejection by about 0.5%
Efficiency for muons against efficiency for simulated τh to pass the cutoff-based and Dμ discriminators, separately for muons and tau_h with 20 < pt < 100 GeV (left) and pt > 100 GeV (right). The four working points are indicated as full circles. Vertical bars cor- respond to the statistical uncertainties. In both pt regimes, the D_m discriminator rejects up to a factor of 10 more muons at tau_h efficiencies around 99%, and it leads to an increase of the τh efficiency for a similar background rejection by about 0.5%
Efficiency for muons against efficiency for simulated τh to pass the cutoff-based and Dμ discriminators, separately for muons and tau_h with 20 < pt < 100 GeV (left) and pt > 100 GeV (right). The four working points are indicated as full circles. Vertical bars cor- respond to the statistical uncertainties. In both pt regimes, the D_m discriminator rejects up to a factor of 10 more muons at tau_h efficiencies around 99%, and it leads to an increase of the τh efficiency for a similar background rejection by about 0.5%
Efficiency for muons against efficiency for simulated τh to pass the cutoff-based and Dμ discriminators, separately for muons and tau_h with 20 < pt < 100 GeV (left) and pt > 100 GeV (right). The four working points are indicated as full circles. Vertical bars cor- respond to the statistical uncertainties. In both pt regimes, the D_m discriminator rejects up to a factor of 10 more muons at tau_h efficiencies around 99%, and it leads to an increase of the τh efficiency for a similar background rejection by about 0.5%
Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of $\pi^\pm$-mesons from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.